128 research outputs found

    Nuclear Excitation Processes in Astrophysical Plasmas

    Get PDF

    Magnetic Moment of the Fragmentation Aligned 61Fe(9/2)+ Isomer

    Full text link
    We report on the g factor measurement of the isomer in 61Fe^{61}Fe (E=861keVE^{*}=861 keV). The isomer was produced and spin-aligned via a projectile-fragmentation reaction at intermediate energy, the Time Dependent Perturbed Angular Distribution (TDPAD) method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the isomer has been observed, allowing a precise determination of its g factor: g=0.229(2)g=-0.229(2). Comparison of the experimental g factor with shell-model and mean field calculations confirms the 9/2+9/2^+ spin and parity assignments and suggests the onset of deformation due to the intrusion of Nilsson orbitals emerging from the νg9/2\nu g_{9/2}.Comment: 4 figures. Submitted to Phys. Rev. Let

    Studies of Vibrational Properties in Ga Stabilized d-Pu by Extended X-ray Absorption Fine Structure

    Full text link
    Temperature dependent extended x-ray absorption fine structure (EXAFS) spectra were measured for a 3.3 at% Ga stabilized Pu alloy over the range T= 20 - 300 K at both the Ga K-edge and the Pu L_III-edge. The temperature dependence of the pair-distance distribution widths, \sigma(T) was accurately modeled using a correlated-Debye model for the lattice vibrational properties, suggesting Debye-like behavior in this material. We obtain pair- specific correlated-Debye temperatures, \Theta_cD, of 110.7 +/- 1.7 K and 202.6 +/- 3.7 K, for the Pu-Pu and Ga-Pu pairs, respectively. These results represent the first unambiguous determination of Ga-specific vibrational properties in PuGa alloys, and indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu bonds. This effect has important implications for lattice stabilization mechanisms in these alloys.Comment: 7 pages, 4 figures, Phys. Rev. B in pres

    Beams for European Neutrino Experiments (BENE): Midterm scientific report

    Get PDF
    The activities of BENE during 2004 and 2005 are reviewed. Neutrino oscillation experiments at accelerators offer the richest possibilities of precision studies of neutrino mixing and mass differences, with the potential of important discoveries including leptonic CP or T violation. Two main options for a major initiative have been studied: 1) a high-energy Neutrino Factory coupled to a large dense magnetized detector; 2) a lower energy betabeam and conventional superbeam, coupled to a very large low-density, non-magnetic, detector. Both offer signi cant scienti c breakthroughs over other planned facilities. Much remains to be done to optimize and establish the cost, performance, and feasibility of either solution so as to allow comparison and decision. The proposal of a FP7 Design Study of a Neutrino Facility to be completed by the end of the decade is being prepared. Its success will require strong support and engagement at CERN and other European laboratories and funding agencies. International contributors are already engaged in the framework of an international scoping study. The recommendations and milestones proposed by BENE towards a complete conceptual design are summarized

    Indirect measurements of neutron-induced reaction cross sections at storage rings

    Get PDF
    Neutron-induced reaction cross sections of unstable nuclei are essential for understanding the synthesis of heavy elements in stars. However, their measurement is very difficult due to the radioactivity of the targets involved. We propose to circumvent this problem by using for the first time the surrogate reaction method in inverse kinematics at heavy-ion storage rings. In this contribution, we describe the developments we have done to perform surrogate-reaction studies at the storage rings of GSI/FAIR. In particular, we present the first results of the proof of principle experiment, which we conducted recently at the Experimental Storage Ring (ESR)

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    RHIC optics and spin dynamics with snakes and rotators

    No full text
    The operation of RHIC collider rings in polarized proton runs includes helical snakes, which allow for preserving polarization during acceleration to store energies. The RHIC lattice also includes spin rotators, operated when nonvertical polarization or corrections to the orientation of polarization at the interaction points are required. Utilization of OPERA field maps of snakes and rotators has been systematized in the past decade, in order to assess in detail the effects of these spin devices on beam polarization, and their perturbative effects on beam optics. The method is also used in ongoing studies regarding the future Electron Ion Collider, to permit increasing average store polarization to at least 70% at 275 GeV and the acceleration of polarized helion with low polarization losses. This paper reviews various applications and outcomes of these field map methods. It is thereby also a review of studies undertaken as part of beam polarization research activities at RHIC in recent years
    corecore