391 research outputs found

    Multi-state and non-volatile control of graphene conductivity with surface electric fields

    Full text link
    Planar electrodes patterned on a ferroelectric substrate are shown to provide lateral control of the conductive state of a two-terminal graphene stripe. A multi-level and on-demand memory control of the graphene resistance state is demonstrated under low sub-coercive electric fields, with a susceptibility exceeding by more than two orders of magnitude those reported in a vertical gating geometry. Our example of reversible and low-power lateral control over 11 memory states in the graphene conductivity illustrates the possibility of multimemory and multifunctional applications, as top and bottom inputs remain accessible.Comment: Graphene ferroelectric lateral structure for multi-state and non-volatile conductivity control, 4 pages, 4 figure

    Power transformer under short-circuit fault conditions: A multiphysics approach

    Get PDF
    Transformers’ windings experience mechanical loads from electromagnetic forces due to the currents they carry. During normal operation, the resulting stresses and strains have minor influence, therefore they do not represent the significant risk to the devices’ integrity. However, transformers can suffer from high sudden short-circuit currents that are several times higher than those during the normal operation. These short-circuit currents are a significant threat, not only from an electrical but also from the structural integrity point of view. In this paper, coupled electromagnetic and structural mechanics simulations are carried out to evaluate short-circuit fault risks in a comprehensive and accurate way

    Power transformer under short-circuit fault conditions: A multiphysics approach

    Get PDF
    Transformers’ windings experience mechanical loads from electromagnetic forces due to the currents they carry. During normal operation, the resulting stresses and strains have minor influence, therefore they do not represent the significant risk to the devices’ integrity. However, transformers can suffer from high sudden short-circuit currents that are several times higher than those during the normal operation. These short-circuit currents are a significant threat, not only from an electrical but also from the structural integrity point of view. In this paper, coupled electromagnetic and structural mechanics simulations are carried out to evaluate short-circuit fault risks in a comprehensive and accurate way

    The Entropy of Square-Free Words

    Full text link
    Finite alphabets of at least three letters permit the construction of square-free words of infinite length. We show that the entropy density is strictly positive and derive reasonable lower and upper bounds. Finally, we present an approximate formula which is asymptotically exact with rapid convergence in the number of letters.Comment: 18 page

    Droit de la construction : de la jurisprudence à la pratique notariale

    Get PDF
    "Parce que le contentieux de la construction concerne les notaires à bien des égards, cette nouvelle chronique, rédigée par des universitaires et des praticiens, a pour objectif premier de brosser un panorama des décisions importantes rendues au cours de l\u27année 2012 en la matière. Les signataires de ces lignes ont ensuite cherché, dans le cadre de cette collaboration entre chercheurs et notaires, à enrichir leurs commentaires de conseils pratiques. Ainsi, au cours de l\u27année écoulée, la Cour de cassation s\u27est prononcée sur des questions générales d\u27organisation de l\u27immeuble, précisant la liberté de choix entre le statut de la copropriété et la division en volumes ou revenant sur les règles applicables aux travaux réalisés sur un mur mitoyen. Des précisions ont également été apportées sur le champ d\u27application de la responsabilité décennale des constructeurs, puisqu\u27il a été rappelé que le vendeur même non professionnel d\u27un immeuble rénové peut, à certaines conditions, engager sa responsabilité décennale, de même que cette cause de responsabilité est également susceptible de s\u27appliquer lorsque les dommages affectant un immeuble neuf causent des préjudices à des tiers ou se matérialisent par un simple risque d\u27écroulement, sans que la catastrophe ne soit encore survenue. Un arrêt important précise en outre, dans le domaine des assurances, la distinction entre la faute lourde, couverte, et celle intentionnelle, dont l\u27assureur ne répondra pas. On relèvera finalement trois décisions importantes en matière de vente d\u27immeubles à construire. Deux concernent la rédaction des actes, quant à la distinction entre les notions d\u27achèvement et de livraison d\u27une part, puis relativement aux clauses d\u27allongement de délai de livraison pour intempéries, d\u27autre part. Le dernier revient sur la question importante la rénovation en précisant l\u27étendue de la responsabilité du notaire dans le choix entre le modèle de la vente en l\u27état futur d\u27achèvement et celui de la vente d\u27immeuble à rénover." Gwenaëlle Durand-Pasquie

    Parameter-state ensemble thinning for short-term hydrological prediction

    Get PDF
    The main sources of uncertainty in hydrological modelling can be summarized as structural errors, parameter errors, and data errors. Operational modellers are generally more concerned with predictive ability than model errors, and this paper presents a new, simple method to improve predictive ability. The method is called parameter-state ensemble thinning (P-SET). P-SET takes a large ensemble of continuous model runs and applies screening criteria to reduce the size of the ensemble. The goal is to find the most promising parameter-state combinations for analysis during the prediction period. Each prediction period begins with the same large ensemble, but the screening criteria are free to select a different sub-set of simulations for each separate prediction period. The case study is from June to October 2014 for a small (1324&thinsp;km2) watershed just north of Lake Superior in Ontario, Canada, using a Canadian semi-distributed hydrologic land-surface scheme. The study examines how well the approach works given various levels of certainty in the data, beginning with certainty in the streamflow and precipitation, followed by uncertainty in the streamflow and certainty in the precipitation, and finally uncertainty in both the streamflow and precipitation. The approach is found to work in this case when streamflow and precipitation are fairly certain, while being more challenging to implement in a forecasting scenario where future streamflow and precipitation are much less certain. The main challenge is determined to be related to parametric uncertainty and ideas for overcoming this challenge are discussed. The approach also highlights model structural errors, which are also discussed.</p

    Increased insolation threshold for runaway greenhouse processes on Earth like planets

    Full text link
    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m2^2, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback on the long term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to defer the runaway greenhouse limit to higher insolation than inferred from 1D models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains cold and dry enough to hamper atmospheric water escape, even at large fluxes. This has strong implications for Venus early water history and extends the size of the habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013. Accepted version before journal editing and with Supplementary Informatio

    Technical design and performance of the NEMO3 detector

    Full text link
    The development of the NEMO3 detector, which is now running in the Frejus Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun more than ten years ago. The NEMO3 detector uses a tracking-calorimeter technique in order to investigate double beta decay processes for several isotopes. The technical description of the detector is followed by the presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author: Corinne Augier ([email protected]

    Exoplanet phase curves: observations and theory

    Full text link
    Phase curves are the best technique to probe the three dimensional structure of exoplanets' atmospheres. In this chapter we first review current exoplanets phase curve observations and the particular challenges they face. We then describe the different physical mechanisms shaping the atmospheric phase curves of highly irradiated tidally locked exoplanets. Finally, we discuss the potential for future missions to further advance our understanding of these new worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been updated with new values for WASP-103b and WASP-18b. Contains a table sumarizing phase curve observation

    A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c

    Get PDF
    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1. The nature of these planets has yet to be determined, since their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range from depleted to extended hydrogen-dominated atmospheres. Here, we report a space-based measurement of the combined transmission spectrum of the two inner planets made possible by a favorable alignment resulting in their simultaneous transits on 04 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at 10-σ\sigma levels; TRAPPIST-1 b and c are hence unlikely to harbor an extended gas envelope as they lie in a region of parameter space where high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum---from a cloud-free water vapour atmosphere to a Venus-like atmosphere.Comment: Early release to inform further the upcoming review of HST's Cycle 24 proposal
    corecore