191 research outputs found

    Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    Full text link
    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International Position Sensitive Detectors Conference, Liverpool, Sept. 200

    Prevalence of Buruli Ulcer in Akonolinga Health District, Cameroon: Results of a Cross Sectional Survey

    Get PDF
    As long as there is no strategy to prevent Buruli ulcer, the early detection and treatment of cases remains the most promising control strategy. Buruli ulcer is most common in remote rural areas where people have little contact with health structures. Information on the number of existing cases in the population and where they go to seek treatment is important for project planning and evaluation. Health structure based surveillance systems cannot provide this information, and previous prevalence surveys did not provide information on spatial distribution and coverage. We did a survey using centric systematic area sampling in a Health District in Cameroon to estimate prevalence and project coverage. We found the method was easy to use and very useful for project planning. It identified priority areas with relatively high prevalence and low coverage and provided an estimate of the number of existing cases in the population of the health district. The active case finding component of the method used served as an awareness campaign and was an integrated part of the project, creating a network of health delegates trained on Buruli ulcer

    The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

    Get PDF
    A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux

    Energy Demand and Temperature: A Dynamic Panel Analysis

    Full text link
    This paper is a first attempt to investigate the effect of climate on the demand for different energy vectors from different final users. The ultimate motivation for this is to arrive to a consistent evaluation of the impact of climate change on key consumption goods and primary factors such as energy vectors. This paper addresses these issues by means of a dynamic panel analysis of the demand for coal, gas, electricity, oil and oil products by residential, commercial and industrial users in OECD and (a few) non-OECD countries. It turns out that temperature has a very different influence on the demand of energy vectors as consumption goods and on their demand as primary factors. In general, residential demand responds negatively to temperature increases, while industrial demand is insensitive to temperature increases. As to the service sector, only electricity demand displays a mildly significant negative elasticity to temperature changes
    corecore