170 research outputs found
Use of ion-assisted sputtering technique for producing photocatalytic titanium dioxide thin films: Influence of thermal treatments on structural and activity properties based on the decomposition of stearic acid
Titanium dioxide thin films were deposited by the reactive ion-assisted sputtering method from titanium targets at various partial pressures and deposition parameters. The films were deposited onto substrates at temperatures ranging from room-temperature conditions to 722 K. A selection of thin films was post-deposited annealed at temperatures up to 972 K for 10 min and characterized by micro-Raman spectroscopy and scanning electron microscopy (SEM) and subsequently analysed to assess their photocatalytic activity. Micro-Raman characterization revealed that the as-deposited films had either predominant amorphous, rutile-like structures, anatase-like structures or anatase-rutile mixed structures. The thin films deposited with a high substrate temperature and with energy assistance from the ion source tended to be amorphous, while films deposited on a hot substrate without ion energy assistance tended to have a mixed crystalline phase. On subsequent annealing the amorphous films changed to a rutile structure at temperatures above 672 K, while mixed anatase-rutile films changed to predominant rutile structures only after thermal treatments above 872 K. Thus, this study has revealed an astonishing persistence of the anatase-rutile mixed phase at very high temperatures and showed the possible existence of a key transition temperature at 672 K, where it was possible to see a transformation from amorphous or mixed phase to a rutile or dominant rutile mixed phase. Photocatalytic tests were undertaken by using a novel method consisting of observing the degradation of a film of stearic acid by the thin films under artificial UV radiation. Of the films investigated those with anatase-rutile mixed phases showed the greatest photoactivity. This work was essential in the understanding of the correlation between growth deposition conditions, phase transitions and photocatalytic activity. This set of experiments demonstrated that titania made under a highly oxidizing atmosphere, with no temperature applied on the substrate during fabrication and using an ion sputtering method, is a useful and valuable novel method for creating active TiO2thin films
First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands
Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, though globally racemic, surfaces. A similar situation can be obtained for metal particles or clusters. Here we report the first separation of the enantiomers of a gold cluster protected by achiral thiolates, Au38(SCH2CH2Ph)24, achieved by chiral high-performance liquid chromatography. The chirality of the nanocluster arises from the chiral arrangement of the thiolates on its surface, forming 'staple motifs'. The enantiomers show mirror-image circular dichroism responses and large anisotropy factors of up to 4×10−3. Comparison with reported circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the chiroptical properties is minor
Lactobacillaceae and Cell Adhesion: Genomic and Functional Screening
The analysis of collections of lactic acid bacteria (LAB) from traditional fermented plant foods in tropical countries may enable the detection of LAB with interesting properties. Binding capacity is often the main criterion used to investigate the probiotic characteristics of bacteria. In this study, we focused on a collection of 163 Lactobacillaceace comprising 156 bacteria isolated from traditional amylaceous fermented foods and seven strains taken from a collection and used as controls. The collection had a series of analyses to assess binding potential for the selection of new probiotic candidates. The presence/absence of 14 genes involved in binding to the gastrointestinal tract was assessed. This enabled the detection of all the housekeeping genes (ef-Tu, eno, gap, groEl and srtA) in the entire collection, of some of the other genes (apf, cnb, fpbA, mapA, mub) in 86% to 100% of LAB, and of the other genes (cbsA, gtf, msa, slpA) in 0% to 8% of LAB. Most of the bacteria isolated from traditional fermented foods exhibited a genetic profile favorable for their binding to the gastrointestinal tract. We selected 30 strains with different genetic profiles to test their binding ability to non-mucus (HT29) and mucus secreting (HT29-MTX) cell lines as well as their ability to degrade mucus. Assays on both lines revealed high variability in binding properties among the LAB, depending on the cell model used. Finally, we investigated if their binding ability was linked to tighter cross-talk between bacteria and eukaryotic cells by measuring the expression of bacterial genes and of the eukaryotic MUC2 gene. Results showed that wild LAB from tropical amylaceous fermented food had a much higher binding capacity than the two LAB currently known to be probiotics. However their adhesion was not linked to any particular genetic equipment
Antigenic Complementarity in the Origins of Autoimmunity: A General Theory Illustrated With a Case Study of Idiopathic Thrombocytopenia Purpura
We describe a novel, testable theory of autoimmunity, outline novel predictions made by the theory, and illustrate its application to unravelling the possible causes of idiopathic thrombocytopenia purpura (ITP). Pairs of stereochemically complementary antigens induce complementary immune responses (antibody or T-cell) that create loss of regulation and civil war within the immune system itself. Antibodies attack antibodies creating circulating immune complexes; T-cells attack T-cells creating perivascular cuffing. This immunological civil war abrogates the self-nonself distinction. If at least one of the complementary antigens mimics a self antigen, then this unregulated immune response will target host tissues as well. Data demonstrating that complementary antigens are found in some animal models of autoimmunity and may be present in various human diseases, especially ITP, are reviewed. Specific mechanisms for preventing autoimmunity or suppressing existing autoimmunity are derived from the theory, and critical tests proposed. Finally, we argue that Koch's postulates are inadequate for establishing disease causation for multiple-antigen diseases and discuss the possibility that current research has failed to elucidate the causes of human autoimmune diseases because we are using the wrong criteria
Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation
Abstract
Background
Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis.
Results
8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation.
Conclusion
Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology
- …