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Thermal Imaging on Smart Vehicles for Person and Road Detection:

Can a Lazy Approach Work?

Galadrielle Humblot-Renaux∗, Vivian Li∗, Daniela Pinto∗, and Letizia Marchegiani

Abstract— This paper proposes the addition of a thermal
camera to an RGB system with the goal of improving person
and road detection reliability in unfavorable weather and illumi-
nation conditions. Custom data is gathered on an experimental
vehicle and used for development and testing. For person
detection, we propose a novel multi-modal approach, where
bounding boxes are initially obtained from RGB and thermal
images using YOLOv3-tiny. We then identify high-intensity
connected components in thermal images to compensate for
missed detections. Detections from the two cameras and the two
algorithms are finally weighed and combined into a confidence
map. Using the proposed fusion method, recall and precision
are improved compared to using RGB only, without the need
to retrain the network. For thermal-based road segmentation,
we achieve an average precision of 94.2% after re-training
MultiNet’s KittiSeg decoder on a small thermal dataset, while
using pre-trained weights for MultiNet’s VGG-based encoder.
These results show that the addition of thermal cameras to
perception systems of autonomous vehicles can bring substantial
benefits with minimal labelling, implementation effort and
training requirements.

I. INTRODUCTION

Autonomous vehicles rely on exteroceptive sensors to

find a navigable path while avoiding obstacles. Traditionally,

cameras are the sensor of choice for detecting obstacles in the

scene. However, these often fall short when facing non-ideal

illumination and weather conditions, as they are inherently

sensitive to any visual change in the scene, such as darkness,

fog, rain or glare from the sun [1]. Other sensor modalities

have been used for similar purposes, such as LIDAR [2]

and microphones [3], [4]; yet, while LIDAR also suffers

in harsh weather conditions (e.g. heavy rain, fog), acoustic

sensing cannot, alone, provide full understanding of the

environment. Radar is currently considered a valid solution,

as quite resilient to a wide range of weather conditions, and

able to detect objects at long range [5]. However, despite the

recent progress in this direction (e.g. [6]), the interpretation

of radar data remains challenging, due also to the presence

of noise and unwanted artifacts. This imposes significant

limitations when trying to leverage existing tools in computer

vision to parse the data, and when creating a labelled dataset

for object detection tasks in radar scans.

In this work, we evaluate the benefits and potential of

adding a thermal camera to an autonomous vehicle for

urban environment understanding. The vehicle we employ

in this study is an experimental golf-cart which operates on
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a university campus, driving primarily on unmarked roads

and bicycle lanes with heavy pedestrian traffic. Given this

application context, we focus our investigation on two crucial

tasks: person and road detection. However, our findings could

be extended to other detection tasks (e.g. vehicle detection).

Much like traditional cameras, thermal cameras provide

the visual cues necessary to not only detect obstacles, but

also to distinguish among different types of objects. They

also share many of the useful properties of the radar: indeed,

they are not sensitive to visible light, they do not rely on any

illumination source, and do not “see” on-coming headlights,

smoke, haze, etc. For this reason, they can be used to detect

heat sources, such as people, through rain, snow or fog,

even though these conditions may lead to a decrease in

range or contrast [7]. Compared to radars, thermal cameras

provide a much more humanly intuitive representation of the

environment, simplifying the labelling process. Furthermore,

given the nature of the data, computer vision methods and

techniques normally adopted in the RGB domain could be

adapted and employed with minimal effort.

In this study, we propose a novel method for multi-modal

person detection, where the predictions obtained on RGB

and thermal images are weighed and combined into a single

confidence map. Firstly, we generate bounding box estimates

by employing a YOLOv3-tiny (You Only Look Once) archi-

tecture [8] on both kinds of data (i.e. RGB and thermal im-

ages). The network is used with pre-trained weights, without

the need for additional retraining, or the need to generate a

labelled training set of thermal images. Secondly, connected

components in thermal images are identified and employed

to compensate for missed detections. Predictions are lastly

scored and integrated into a confidence map. Additionally,

we present a thermal image-based road detection framework,

implemented through a MultiNet architecture [9], using pre-

trained VGG16 weights for the encoder [10], and only re-

training the KittiSeg segmentation decoder, such that the

network is trained with very little thermal data. Note that

we use the terms “road segmentation” and “road detection”

interchangeably throughout this paper. Our evaluation, based

on real data collected with our experimental vehicle, demon-

strates that thermal cameras could be a compelling alternative

for vision-based systems operating on autonomous vehicles,

both if used as a single modality, and in combination with

RGB cameras. By taking a “lazy” approach which leverages

existing deep learning networks pre-trained on RGB data, we

also show that enabling thermal vision on smart vehicles does

not necessarily require developing dedicated architectures or

annotating large datasets.



Fig. 1. Person Detection: High-level diagram showing how detections from thermal and RGB images are combined into a confidence map. The figure
also reports the experimental platform employed in this study, where the position of the two visual sensors is highlighted.

II. RELATED WORK

A. Person Detection

Detecting people accurately is a crucial task to guarantee

safety in autonomous vehicles. While a vast number of

approaches have been proposed over the years for this

purpose, Convolution Neural Networks (CNNs) are now

considered the ones yielding the greatest performance [11]

[12]. Thermal imaging is an attractive approach for person

detection since humans will always appear “heated” in the

scene, regardless of the illumination. One of the first attempts

to rely only on the use of thermal images for pedestrian

detection has been presented in [13]. The approach makes use

of Support Vector Machines (SVMs), but manages to achieve

only a 35% detection rate. More recently, in [14] a YOLOv3

network is retrained on thermal images, obtaining remarkable

results in the context of surveillance. In [15], the authors

introduced a modified version of YOLO, YOLO Darknet for

object recognition on long range thermal images. A system

exploiting the stereo information from two thermal cameras

has been described in [16]. The possibility of combining

RGB and thermal data have been also approached in a

number of works, starting from [17], which demonstrate that

even adding a low-cost, low-resolution infra-red sensor to

an RGB person tracker can significantly improve the perfor-

mance of the system. Lately, [18] presented a CNN-based

object recognition framework, where the training dataset is

augmented by model images, created using object 3D models

textured by real color and thermal images. Our study, which

employs a mono high-resolution thermal camera is close in

spirit to the analysis proposed in [19]. Yet, compared to

that work, where a set of CNN architectures is retrained by

mixing different combinations of RGB, thermal and VOC

data [20], our approach does not require additional training

and labelling (cf. Section I), crucial aspects which can greatly

facilitate its use.

B. Road Detection

While the literature provides many different approaches

for road detection in RGB images (e.g. [21], [22]), little

research is available on road detection using thermal imaging.

One of the reasons might be that many traditional road

detection algorithms rely on white markings which cannot

be recovered by a thermal camera. Furthermore, most large

publicly-available datasets used for neural network training

only contain RGB images. The authors in [23] present a

robust road detection method based on a thermal system,

which, however, requires two cameras to compute disparity

information. In [24], a scene-adaptive sampling method for

road detection in the thermal domain is presented. The

approach yields good performance; however, the extensive

evaluation carried out shows that Fully Convolutional Net-

works (FCNs) out-perform the approach, as well as other

deep learning architectures. Building on those results, we

opt for the employment of an FCN-based KittiSeg network,

which, even when trained on a small dataset of mono thermal

images (i.e. no stereo information or large amount of data

needed) achieves remarkable performance.

III. METHODS

A. Person Detection

The chosen person detection method is the real-time object

detection system, YOLOv3-tiny [8]. A major advantage of

the YOLO architecture is that it is able to perform de-

tections in a single network pass, which ranks it amongst

the fastest state-of-the-art object detectors without sacrificing

performance. YOLOv3-tiny is a smaller model of the original

YOLOv3 which satisfies the requirements of working real-

time with non-dedicated hardware with an accuracy trade-

off. The network consists of 23 layers and is pre-trained on

the COCO dataset [25] to detect over 80 different object

classes. Yet, using pre-trained YOLOv3-tiny on our own

data may result in missed or erroneous detections. For

this reason, we take advantage of the unique features of

thermal images to develop an alternative algorithm based on

connected components labelling to use in combination with

YOLOv3-tiny. Since people stand out in their intensity level

from the rest of the scene due to their body heat, they can

be extracted with simple adaptive thresholding. This gives

a binarized image. Connected components labelling is then

used to identify groups of connected pixels likely to belong to

the same object. Further analysis of each resulting bounding

box is required to discard boxes which are unlikely to be

people.

We use the following intuitions to give each bounding box

a confidence score based on its shape and position:

• aspect ratio of the box: a highly imbalanced aspect ratio

(eg. a very long & thin box) would not correspond to a

person;



Fig. 2. Road Segmentation Architecture. Modified image from [9].

• relation between the box position and its height: the

further away a person is, the smaller they appear and

the smaller their y-position.

We also discard any detection which is positioned higher

than the horizon, as well as bounding boxes below a specific

height (since we are mostly concerned with detecting people

in the vicinity of the vehicle). The score calculation and

constraints are described in Section IV-B. The workflow of

the proposed method is illustrated in Fig. 1.

After a detection algorithm is run on both camera frames,

the resulting two sets of bounding boxes may not overlap.

In order to compare and combine both sets of detections, all

bounding boxes should be mapped onto a single reference

frame. Since two cameras cannot have the exact same po-

sition, and may also have different orientations or Fields of

View (FOV), it is necessary to find the homography relating

their respective image planes. Due to the different nature

of RGB and thermal images, features cannot be extracted

and matched algorithmically. Therefore, in order to find a

transformation from one camera frame to the other, a set of

feature points is manually selected. The two sets of feature

points are matched using model fitting (with all points con-

sidered inliers) to estimate a perspective transformation. The

perspective transformation is then applied to the bounding

box coordinates from one camera to map them to the other

camera’s frame. This results in a single image in the reference

frame featuring bounding boxes from both cameras. The goal

is then to combine these 3 sets of bounding boxes into a

single image. As introduced above, for each bounding box,

a score is computed indicating how likely it is that it really

corresponds to a person. A confidence map is then generated

for each algorithm as follows:

• start with an empty map (an array of zeros with the

same dimensions as the captured image);

• sort bounding boxes by their weight, starting by the

lowest;

• for each bounding box, set the value of the correspond-

ing map area to the bounding box score.

The confidence maps for each algorithm are then simply

added into a single map and normalized.

B. Road Segmentation

The goal is to identify navigable road area without relying

on markings. We do so by relying on the semantic segmen-

tation pipeline of the MultiNet model presented in [9]. This

network is chosen as it achieves high performance on the

Kitti Benchmark [26] (for both marked and unmarked roads),

has the capability to run in real-time, supports grayscale

images and only requires a small dataset for training.

MultiNet follows an encoder-decoder structure, as illus-

trated in Fig. 2. The encoder is based on the VGG16

architecture, and trained on the ImageNet dataset [27].

The segmentation decoder KittiSeg is based on a FCN

architecture and was originally trained on the Kitti Vision

Benchmark dataset [26]. In order to obtain good performance

on the benchmark, the authors disabled data augmentation

during training. This causes over-fitting, which makes the

pre-trained weights perform poorly on data outside of the

Kitti dataset, especially thermal data which differs from the

original RGB dataset by its very nature. Therefore, instead of

using the original weights, we re-train the KittiSeg decoder

on our custom dataset of thermal images.

IV. EXPERIMENTS

We perform three different experiments: firstly, we inves-

tigate whether using the YOLOv3-tiny network with pre-

trained weights is a viable option for person detection in

thermal images. Secondly, we analyse the behaviour of the

multi-modal scheme we propose in this paper. Lastly, we

evaluate the performance of the road segmentation method.

For all the experiments, we rely on data collected with our

golf cart, equipped with a ZED RGB camera (with resolution

of 1280×720), positioned at the front of the vehicle, and an

AXIS Q1942-E thermal camera, mounted on the roof (with

resolution of 800×600, operating in the long-wave infrared

(LWIR) range). Our custom RGB and thermal datasets are

collected during sunny and cloudy weather at different times

of the day in winter (average temperature of 7◦C).

A. Person Detection with YOLOv3-tiny (pre-trained weights)

This experiment investigates how YOLOv3-tiny with pre-

trained weights performs on thermal images, using RGB im-

ages as a base-line. A custom dataset consisting of 200 RGB

images and 200 thermal images featuring people is annotated

and used for testing. Default parameters [8] are used during

inference. In order to compare the performance of YOLOv3-

tiny on RGB and thermal images, the output of approxi-

mately the same time-frames are compared and evaluated.

Bounding box precision and recall are computed for different

overlap thresholds λ. Figure 3 shows the precision-recall



curve for both thermal and RGB images, using YOLOv3-

tiny with pre-trained weights: for almost every λ, both the

precision and recall are higher for thermal images. This

suggests that even though it was pre-trained on an RGB

dataset, the YOLOv3-tiny network can be directly used on

our thermal images without compromising performance.

Fig. 3. Bounding box Precision-Recall curve for YOLOv3-tiny’s perfor-
mance on thermal (red) and RGB images (blue).

The multi-modal scheme described below requires choos-

ing a λ for YOLOv3-tiny predictions. In the context of

autonomous vehicles, failing to detect a pedestrian is a

critical safety issue: it is more important to minimize false

negatives than false positives. Therefore a higher recall

value is preferred. Based on the curve in Fig. 3, we thus

set λ to 0.2 for inference on new images, corresponding

to a precision/recall pair of 0.781/0.715 for thermal and

0.594/0.665 for RGB images.

B. Person Detection with the Multi-Modal Scheme

The initial step consists in identifying connected compo-

nents in thermal images. This requires that we first obtain

a binary image which successfully separates people from

the background. For this, a fixed constant threshold is a

poor choice since the intensity distribution may vary across

captures. Therefore, an adaptive threshold is preferable. To

pick a suitable threshold, we look at the intensity distribution

of different captures. For each image, the mean intensity

of the whole scene is compared with the mean intensity

of a rectangular area containing a person, and the average

ratio between them is computed. Out of seven images, the

lowest ratio is 1.149. We therefore set the threshold to a

“conservative” value of 1.14 multiplied by the mean intensity

of the image. An example of a binarized image is shown

in Fig. 6b. Connected components labelling is then applied

to the binarized image using the block-based decision tree

(BBDT) implementation described in [28].

A transformation matrix from the thermal camera’s to

the RGB camera’s reference frame is found and applied to

bounding box coordinates from thermal images, such that all

bounding boxes are expressed in the RGB camera’s higher-

resolution coordinate system.

Next, a confidence score is assigned to each of the bound-

ing boxes. Based on statistical analysis of 850 bounding

boxes from ground truth annotations, two linear models

(a) Height vs y-position. (b) Height vs width.

Fig. 4. Linear regression fit based on 850 bounding box annotations, used
for calculating the position score and aspect ratio score for new bounding
box measurements.

relating the height & y-position, and the width & height

respectively are obtained using a regression fitting algorithm.

The data points and regression line are shown in Fig. 4. A

position score and an aspect ratio score ranging from 0 to 1

are calculated for each box based on its distance from each

of the two regression lines:

score =

(

1−
(y − ŷ)

maxdistance

)2

(1)

where ŷ is the predicted value, y the corresponding measured

value, and maxdistance acts as a normalization factor (as il-

lustrated in Fig. 4). The total score is obtained by multiplying

these two scores. Thus, the total score of a bounding box

ranges between 0 and 1 and cannot be larger than either the

position or the aspect ratio score. This bounding box score

represents the likelihood that the bounding box corresponds

to a person. To illustrate this, four arbitrary boxes are scored

and shown in Fig. 5. The two red boxes are unlikely to

correspond to people, while the green boxes have a high

score due to their aspect ratio and position, and size.

Fig. 5. Confidence score computed for arbitrary boxes, overlayed on an
RGB image.

Since the cameras are mounted at a fixed angle and we

assume navigation on a flat terrain (i.e. changes in elevation

can be considered insignificant and ignored in our scenario),

the horizon level can be estimated by visual inspection.

We consider the top 30% of our images to be above the

horizon level. We also set the minimum allowable height of

a bounding box to be 10% of the image height, as this would

correspond to people far in the distance. Two examples of

the confidence scoring applied on the connected components

detection are shown in Fig. 6.



(a) Original thermal image. (b) Detections overlayed on binarized
image.

Fig. 6. Detected objects after applying adaptive thresholding, connected
components detection and bounding box scoring on an thermal image. Only
boxes with a score > 0.5 are shown.

Fig. 7. Example showing a generated confidence map.

An example of a generated confidence map is shown in

Fig. 7. A higher intensity indicates that the detection occurred

in several modalities and/or has a high confidence score.

We use the same ground truth dataset as in Section IV-

A. Binary images are generated from annotations. Each

generated confidence map is thresholded into a binary image

and compared to the corresponding binary ground truth

image. The average recall and precision is then calculated

for different threshold values. Unlike the previous experiment

(Section IV-A), recall and precision are calculated pixel-wise.

For comparison, a confidence map is generated for the 3

following cases:

• using the RGB camera only;

• combining RGB and thermal YOLOv3-tiny detections;

• running YOLOv3-tiny and the connected components

algorithm on thermal, combined with YOLOv3-tiny on

RGB.

Evaluation results are plotted in Fig. 8 and show that

combining YOLOv3-tiny person detections from RGB and

thermal images yields higher precision and recall than using

RGB images alone. Combining YOLOv3-tiny with the con-

nected components algorithm further improves recall with a

small precision trade-off.

Fig. 8. Pixel-wise Precision-Recall curve of the proposed method com-
pared to using RGB alone or YOLOv3-tiny on RGB and thermal images.
Unlike Fig. 3, bounding boxes are scored with our proposed scoring method.

C. Road Segmentation with KittiSeg

A small dataset of around 350 images is used for training

and testing. The images are captured with the experimental

golf cart along different bicycle lanes, main marked roads

and parking lots, providing a quite diverse dataset. Image

augmentation was enabled during training to increase the size

of the dataset. This includes random changes in brightness,

contrast and hue, as well as random cropping. The rest of

the training parameters were left as default. [9]

Table I shows the recorded performance. The values for

both training and testing dataset are very similar, meaning

that the network is not over-fitting to the training dataset.

Fig. 9 shows an example result.

(a) Ground truth image
(black: background class, blue: road).

(b) KittiSeg output
(estimated road area in green).

Fig. 9. Road segmentation output with KittiSeg trained on thermal dataset.

Training dataset Testing dataset

Average precision 94.2771 94.2186

Maximum F1 98.7994 97.4229

TABLE I. Performance evaluation of KittiSeg trained on thermal images.

V. DISCUSSION

Person detection - Pedestrians sometimes fail to be de-

tected in RGB captures while being detected in thermal cap-

tures or vice-versa. For instance, on a sunny day, significant

glare in RGB images may completely obstruct people in

the scene, and thus result in missing detections. However,

since the thermal camera is insensitive to visible light,



glare does not appear in the thermal images and thus these

pedestrians are successfully recovered in the confidence map.

Furthermore, running the connected components algorithm

in parallel with YOLOv3-tiny on thermal images allows

many missing detections to be recovered. Even though the

connected components algorithm also generates false positive

detections, this is an acceptable trade-off considering the

context of autonomous driving: it is much safer to mistake

certain objects for people than to miss people altogether.

Combining captures nevertheless presents several implemen-

tation challenges. Our multi-modal implementation assumes

that thermal and RGB images are captured synchronously.

In practice, the two cameras operate at different frame-rates,

therefore detections of the same object may not perfectly

overlap. Differences in the camera’s FOVs also introduces

“blind spots” in which the RGB camera is a single point of

failure. Investigation of how the YOLOv3-tiny evaluation and

proposed multi-modal scheme generalize to different datasets

and experimental set-ups is left for future work.

Road Segmentation - Traversable road areas are precisely

detected in a variety of different road configurations, without

relying on road marks. Some inaccurate detections some-

times occur when there are foreign objects on the road (e.g.

leafs, pothole). This could be limited by adding more of these

examples to the training dataset.

VI. CONCLUSION

This paper confirms thermal imaging to be a very promis-

ing modality for both road and person detection, and shows

that existing RGB image-based methods can be transferred

to the thermal domain with little effort or complexity. Our

proposed multi-modal scheme, indeed, achieves remarkable

performance without the need to re-train the YOLOv3-tiny

network which we use to generate an initial estimate of

the bounding boxes, nor generate a fully labelled training

dataset. We also show that the MultiNet deep learning archi-

tecture is able to achieve state-of-the-art road segmentation

performance on high-resolution thermal images, using only

a small labelled dataset for training the FCN-based decoder,

and without needing to re-train the VGG-based encoder. The

main limitation of the evaluation method is that our custom

datasets did not include images captured in challenging

weather conditions. However, given the nature of thermal

cameras, we expect comparable performance in rain or fog,

similarly to what has been already proved in [14].

REFERENCES

[1] D. S. P. T. T. R. Shizhe Zang, Ming Ding and M. A. Kaafar, “The
impact of adverse weather conditions on autonomous vehicles,” IEEE

Vehicular Technology Magazine, vol. 14, pp. 103–111, 2019.
[2] M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong, and I. Posner,

“Vote3Deep: Fast Object Detection in 3D Point Clouds Using Effi-
cient Convolutional Neural Networks,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2017.
[3] L. Marchegiani and I. Posner, “Leveraging the urban soundscape:

Auditory perception for smart vehicles,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2017.
[4] L. Marchegiani and P. Newman, “Listening for sirens: Locating

and classifying acoustic alarms in city scenes,” arXiv preprint

arXiv:1810.04989, 2018.

[5] S. Chadwick, W. Maddern, and P. Newman, “Distant vehicle detection
using radar and vision,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2019.
[6] R. Weston, S. Cen, P. Newman, and I. Posner, “Probably unknown:

Deep inverse sensor modelling radar,” in IEEE International Confer-

ence on Robotics and Automation (ICRA), 2019.
[7] F. C. V. Systems, “Metrological effects of fog & rain upon ir camera

performance.”
[8] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”

arXiv, 2018.
[9] M. Teichmann, M. Weber, J. M. Zöllner, R. Cipolla, and R. Urtasun,
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