71 research outputs found

    Genome-wide association study identifies multiple susceptibility loci for glioma

    Get PDF
    Previous genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of glioma. To identify new glioma susceptibility loci, we conducted a meta-analysis of four GWAS (totalling 4,147 cases and 7,435 controls), with imputation using 1000 Genomes and UK10K Project data as reference. After genotyping an additional 1,490 cases and 1,723 controls we identify new risk loci for glioblastoma (GBM) at 12q23.33 (rs3851634, near POLR3B, P=3.02 × 10−9) and non-GBM at 10q25.2 (rs11196067, near VTI1A, P=4.32 × 10−8), 11q23.2 (rs648044, near ZBTB16, P=6.26 × 10−11), 12q21.2 (rs12230172, P=7.53 × 10−11) and 15q24.2 (rs1801591, near ETFA, P=5.71 × 10−9). Our findings provide further insights into the genetic basis of the different glioma subtypes

    Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central aim for studying runs of homozygosity (ROHs) in genome-wide SNP data is to detect the effects of autozygosity (stretches of the two homologous chromosomes within the same individual that are identical by descent) on phenotypes. However, it is unknown which current ROH detection program, and which set of parameters within a given program, is optimal for differentiating ROHs that are truly autozygous from ROHs that are homozygous at the marker level but vary at unmeasured variants between the markers.</p> <p>Method</p> <p>We simulated 120 Mb of sequence data in order to know the true state of autozygosity. We then extracted common variants from this sequence to mimic the properties of SNP platforms and performed ROH analyses using three popular ROH detection programs, PLINK, GERMLINE, and BEAGLE. We varied detection thresholds for each program (e.g., prior probabilities, lengths of ROHs) to understand their effects on detecting known autozygosity.</p> <p>Results</p> <p>Within the optimal thresholds for each program, PLINK outperformed GERMLINE and BEAGLE in detecting autozygosity from distant common ancestors. PLINK's sliding window algorithm worked best when using SNP data pruned for linkage disequilibrium (LD).</p> <p>Conclusion</p> <p>Our results provide both general and specific recommendations for maximizing autozygosity detection in genome-wide SNP data, and should apply equally well to research on whole-genome autozygosity burden or to research on whether specific autozygous regions are predictive using association mapping methods.</p

    A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1.

    Get PDF
    Genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of childhood acute lymphoblastic leukemia (ALL). To identify new susceptibility loci for the largest subtype of ALL, B-cell precursor ALL (BCP-ALL), we conducted a meta-analysis of two GWASs with imputation using 1000 Genomes and UK10K Project data as reference (totaling 1658 cases and 7224 controls). After genotyping an additional 2525 cases and 3575 controls, we identify new susceptibility loci for BCP-ALL mapping to 10q26.13 (rs35837782, LHPP, P=1.38 × 10(-11)) and 12q23.1 (rs4762284, ELK3, P=8.41 × 10(-9)). We also provide confirmatory evidence for the existence of independent risk loci at 9p21.3, but show that the association marked by rs77728904 can be accounted for by linkage disequilibrium with the rare high-impact CDKN2A p.Ala148Thr variant rs3731249. Our data provide further insights into genetic susceptibility to ALL and its biology

    Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    Get PDF
    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development

    Multiple Loci Are Associated with White Blood Cell Phenotypes

    Get PDF
    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds

    Genome-wide association studies of cancer: current insights and future perspectives.

    Get PDF
    Genome-wide association studies (GWAS) provide an agnostic approach for investigating the genetic basis of complex diseases. In oncology, GWAS of nearly all common malignancies have been performed, and over 450 genetic variants associated with increased risks have been identified. As well as revealing novel pathways important in carcinogenesis, these studies have shown that common genetic variation contributes substantially to the heritable risk of many common cancers. The clinical application of GWAS is starting to provide opportunities for drug discovery and repositioning as well as for cancer prevention. However, deciphering the functional and biological basis of associations is challenging and is in part a barrier to fully unlocking the potential of GWAS

    Integer Valued AR Processes with Explanatory Variables

    No full text
    Integer valued AR (INAR) processes are perfectly suited for modelling count data. We consider the inclusion of explanatory variables into the INAR model to extend the applicability of INAR models and give an alternative to Poisson regression models. An efficient MCMC algorithm is constructed to analyze the model and incorporates both explanatory variable and order selection. The methodology is illustrated by analyzing monthly polio incidences in the USA 1970-1983 and claims from the logging industry to the British Columbia Workers ’ Compensation Board 1985-1994
    corecore