189 research outputs found

    Formation of J-aggregates of Thiamonomethincyanine Dyes in the Presence of CdTe Nanoparticles

    Get PDF
    The conditions of formation of J-aggregates for three types of thiamonomethincyanine dyes, whose structure is differed by end groups, are studied depending on their concentration and type of interaction with CdTe nanoparticles with size of about 3 nm in aqueous dispersions. The influence of dye structure on the efficiency of formation of J-aggregates in solutions and in films was found. It was found that quantum dots (QDs) of CdTe stabilized by thioglycolic acid can adsorb J-aggregates of the dye molecules on their surface. It was shown for the first time that the hybrid structure of dye-CdTe can be formed through the interaction of negatively charged dye molecules and negatively charged surface of the QDs through the formation of neutral aggregates. It was not found any processes of energy transfer from dye to the particles of CdTe neither for the dimer - CdTe system nor for the J-aggregates – CdTe system. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3544

    Pion-Production in Heavy-Ion Collisions at SIS energies

    Full text link
    We investigate the production of pions in heavy-ion collisions in the energy range of 11 - 22 GeV/A. The dynamics of the nucleus-nucleus collisions is described by a set of coupled transport equations of the Boltzmann-Uehling-Uhlenbeck type for baryons and mesons. Besides the N(938)N(938) and the Δ(1232)\Delta(1232) we also take into account nucleon resonances up to masses of 1.9GeV/c21.9 GeV/c^2 as well as π\pi-, η\eta- and ρ\rho-mesons. We study in detail the influence of the higher baryonic resonances and the 2π2\pi-production channels (NNNNππNN\to NN \pi\pi) on the pion spectra in comparison to π\pi^- data from Ar+KClAr + KCl collisions at 1.81.8 GeV/A and π0\pi^0-data for Au+AuAu+Au at 1.0 GeV/A. We, furthermore, present a detailed comparison of differential pion angular distributions with the BEVALAC data for Ar + KCl at 1.8 GeV/A. The general agreement obtained indicates that the overall reactions dynamics is well described by our novel transport approach.Comment: 31 pages, 18 figures (inlcuded), to appear in Z. Phys.

    Delta excitation in K^+-nucleus collisions

    Get PDF
    We present calculations for \Delta excitation in the (K^+,K^+) reaction in nuclei. The background from quasielastic K^+ scattering in the \Delta region is also evaluated and shown to be quite small in some kinematical regions, so as to allow for a clean identification of the \Delta excitation strength. Nuclear effects tied to the \Delta renormalization in the nucleus are considered and the reaction is shown to provide new elements to enrich our knowledge of the \Delta properties in a nuclear medium.Comment: 11 pages, 6 figures, LaTe

    Optical alignment and orientation of excitons in ensemble of core/shell CdSe/CdS colloidal nanoplatelets

    Full text link
    We report on the experimental and theoretical studies of optical alignment and optical orientation effects in an ensemble of core/shell CdSe/CdS colloidal nanoplatelets. The dependences of three Stokes parameters on the magnetic field applied in the Faraday geometry are measured under continuous wave resonant excitation of the exciton photoluminescence. Theoretical model is developed to take into account both bright and dark exciton states in the case of strong electron and hole exchange interaction and random in-plane orientation of the nanoplatelets in ensemble. The data analysis allows us to estimate the time and energy parameters of the bright and dark excitons. The optical alignment effect enables identification of the exciton and trion contributions to the photoluminescence spectrum even in the absence of a clear spectral line resolution.Comment: main paper (17 pages) and SI (6 pages

    The Landé factors of electrons and holes in lead halide perovskites: universal dependence on the band gap

    Get PDF
    The Landé or g-factors of charge carriers are decisive for the spin-dependent phenomena in solids and provide also information about the underlying electronic band structure. We present a comprehensive set of experimental data for values and anisotropies of the electron and hole Landé factors in hybrid organic-inorganic (MAPbI3, MAPb(Br0.5Cl0.5)3, MAPb(Br0.05Cl0.95)3, FAPbBr3, FA0.9Cs0.1PbI2.8Br0.2, MA=methylammonium and FA=formamidinium) and all-inorganic (CsPbBr3) lead halide perovskites, determined by pump-probe Kerr rotation and spin-flip Raman scattering in magnetic fields up to 10 T at cryogenic temperatures. Further, we use first-principles density functional theory (DFT) calculations in combination with tight-binding and k ⋅ p approaches to calculate microscopically the Landé factors. The results demonstrate their universal dependence on the band gap energy across the different perovskite material classes, which can be summarized in a universal semi-phenomenological expression, in good agreement with experiment

    CdTe quantum dots precipitation of monodisperse fractions from colloid solutions

    Get PDF
    Abstract. CdTe nanocrystals were prepared in aqueous solution by the reaction between Cd 2+ and H 2 Te, obtained electrochemically in a galvanostatic cell, in the presence of thioglycolic acid. Subsequently, we have investigated precipitation of monodisperse fractions of CdTe quantum dots from polydisperse colloid solutions. In addition, the photoluminescence characteristics of these systems were studied in detail

    Flavor Production in Pb(160AGeV) on Pb Collisions: Effect of Color Ropes and Hadronic Rescattering

    Get PDF
    Collective interactions in the preequilibrium quark matter and hadronic resonance gas stage of ultrarelativistic nucleus-nucleus collisions are studied in the framework of the the transport theoretical approach RQMD. The paper reviews string fusion into color ropes and hadronic rescattering which serve as models for these interactions. Hadron production in central Pb(160AGeV) on Pb collisions has been calculated. The changes of the final flavor composition are more pronounced than in previous RQMD studies of light ion induced reactions at 200AGeV. The ratio of created quark pairs ssˉs\bar{s}/(uuˉu\bar{u}+ddˉd\bar{d}) is enhanced by a factor of 2.4 in comparison to pppp results. Color rope formation increases the initially produced antibaryons to 3 times the value in the `NN mode', but only one quarter of the produced antibaryons survives because of subsequent strong absorption. The differences in the final particle composition for Pb on Pb collisions compared to S induced reactions are attributed to the hadronic resonance gas stage which is baryon-richer and lasts longer.Comment: 60 pages + 11 postscript figures (uuencoded and included

    High-frequency modeling of GaN/SiC blue light-emitting diodes

    Get PDF
    We report on this work a model to accurately predict the electrical behavior of double-heterostructure GaN/SiC blue light-emitting diodes up to microwave frequencies. A procedure to extract the series resistance (R-s) from the reflection coefficient is suggested. This procedure offers the advantage of using measurements without any bias current and therefore the obtained values of R-s are influenced neither by the device heating nor by inaccuracies in the calculation of the ideality factor. The junction capacitance and conductance measured in the range 1 kHz-10 MHz shows two different relaxation mechanisms, and the total capacitance can be fitted very accurately to a double Lorentzian function. Blue light-emitting diodes and lasers based on gallium nitride (GaN) semiconductor compounds represent one of the most important breakthroughs in electronics and optoelectronics of recent years. The combination of silicon carbide (SiC) and GaN has recently enabled low-cost blue-emitting diodes to be introduced in industry. (C) 2005 American Institute of Physics
    corecore