7 research outputs found

    Mass and metallicity scaling relations of high redshift star-forming galaxies selected by GRBs

    Full text link
    We present a comprehensive study of the relations between gas kinematics, metallicity, and stellar mass in a sample of 82 GRB-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift and find the correlation derived from emission lines to have a significantly smaller scatter compared to that found using absorption lines. Using 33 GRB hosts with measured stellar mass and metallicitiy, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2M10^{8.2} M_{\odot} to 1011.1M10^{11.1} M_{\odot} and a redshift range of z0.33.4 z\sim 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error-bar on the metallicity measurements of the GRB sample and also the scatter on the MZ relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions

    Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts

    Get PDF
    We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the NV 1238,1242 line transitions, but we also discuss other high-ionization lines such as OVI, CIV and SiIV. We find no correlation between the column density of NV and the neutral gas properties such as metallicity, HI column density and dust depletion, however the relative velocity of NV, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of HI. This may be explained if the NV gas is part of an HII region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2-sigma significance) that the X-ray derived column density, N_H,X, may be correlated with the column density of NV, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where NV (and also OVI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow

    The luminous, massive and solar metallicity galaxy hosting the Swift gamma-ray burst, GRB 160804A at z = 0.737

    Get PDF
    We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A atz = 0.737. Typically, GRBs are found in lowmass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M∗/ M) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = −21.94 mag, but find it to be dust-poor (E(B − V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gasphase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to <15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies

    Swift follow-up of gravitational wave triggers: Results from the first aLIGO run and optimization for the future

    Get PDF
    During its first observing run, in late 2015, the advanced Laser Interferometer Gravitationalwave Observatory facility announced three gravitational wave (GW) triggers to electromagnetic follow-up partners. Two of these have since been confirmed as being of astrophysical origin: both are binary black hole mergers at ~500 Mpc; the other trigger was later found not to be astrophysical. In this paper, we report on the Swift follow-up observations of the second and third triggers, including details of 21 X-ray sources detected; none of which can be associated with the GW event. We also consider the challenges that the next GW observing run will bring as the sensitivity and hence typical distance of GW events will increase. We discuss how to effectively use galaxy catalogues to prioritize areas for follow-up, especially in the presence of distance estimates from the GW data. We also consider two galaxy catalogues and suggest that the high completeness at larger distances of the 2MASS Photometric Redshift catalogue makes it very well suited to optimize Swift follow-up observations

    Discovery of the nearby long, soft GRB100316D with an associated supernova

    Full text link
    We report the Swift discovery of the nearby long, soft gamma-ray burst GRB 100316D, and the subsequent unveiling of its low-redshift host galaxy and associated supernova. We derive the redshift of the event to be z= 0.0591 ± 0.0001 and provide accurate astrometry for the gamma-ray burst (GRB) supernova (SN). We study the extremely unusual prompt emission with time-resolved γ-ray to X-ray spectroscopy and find that the spectrum is best modelled with a thermal component in addition to a synchrotron emission component with a low peak energy. The X-ray light curve has a remarkably shallow decay out to at least 800 s. The host is a bright, blue galaxy with a highly disturbed morphology and we use Gemini-South, Very Large Telescope and Hubble Space Telescope observations to measure some of the basic host galaxy properties. We compare and contrast the X-ray emission and host galaxy of GRB 100316D to a subsample of GRB-SNe. GRB 100316D is unlike the majority of GRB-SNe in its X-ray evolution, but resembles rather GRB 060218, and we find that these two events have remarkably similar high energy prompt emission properties. Comparison of the host galaxies of GRB-SNe demonstrates, however, that there is a great diversity in the environments in which GRB-SNe can be found. GRB 100316D is an important addition to the currently sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned

    THESEUS: a key space mission for Multi-Messenger Astrophysics

    Full text link
    The recent discovery of the electromagnetic counterpart of the gravitational wave source GW170817, has demonstrated the huge informative power of multi-messenger observations. During the next decade the nascent field of multi-messenger astronomy will mature significantly. In 2030s, third generation gravitational wave detectors will be roughly ten times more sensitive than the current ones. At the same time, neutrino detectors currently upgrading to multi km^3 telescopes, will include a 10 km^3 facility in the Southern hemisphere that is expected to be operational during the thirties. In this review, we describe the most promising high frequency gravitational wave and neutrino sources that will be detected in the next two decades. In this context, we show the important role of the Transient High Energy Sky and Early Universe Surveyor (THESEUS), a mission concept proposed to ESA by a large international collaboration in response to the call for the Cosmic Vision Programme M5 missions. THESEUS aims at providing a substantial advancement in early Universe science as well as playing a fundamental role in multi-messenger and time-domain astorphysics. It will operate in strong sinergy with future gravitational wave and neutrino detectors as well as major ground- and space-based telescopes. This review is an extension of the THESEUS white paper (Amati et al., 2017), in light of the discovery of GW170817/GRB170817A that was announced on October 16th, 2017

    The THESEUS space mission concept: science case, design and expected performances

    No full text
    THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5–1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift ∼10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late ’20s/early ’30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA)
    corecore