764 research outputs found

    Genotoxicological Characterization of (+/-)cis-4,4 '-DMAR and (+/-)trans-4,4 '-DMAR and Their Association

    Get PDF
    The novel psychoactive substance (NPS) 4-Methyl-5-(4-methylphenyl)-4,5-dihydroxazol-2-amine (4,4'-DMAR) shows psychostimulant activity. Data on the acute toxicity of 4,4'-DMAR are becoming increasingly available, yet the long-term effects are still almost unknown. In particular, no data on genotoxicity are available. Therefore, the aim of the present study was to evaluate its genotoxic potential using the "In Vitro Mammalian Cell Micronucleus Test" (MNvit) on (+/-)cis-4,4'-DMAR and (+/-)trans-4,4'-DMAR and their associations. The analyses were conducted in vitro on human TK6 cells. To select suitable concentrations for MNvit, we preliminarily evaluated cytotoxicity and apoptosis. All endpoints were analysed by flow cytometry. The results reveal the two racemates' opposite behaviours: (+/-)cis-4,4'-DMAR shows a statistically significant increase in micronuclei (MNi) frequency that (+/-)trans-4,4'-DMAR is completely incapable of. This contrast confirms the well-known possibility of observing opposite biological effects of the cis- and trans- isomers of a compound, and it highlights the importance of testing single NPSs that show even small differences in structure or conformation. The genotoxic capacity demonstrated stresses an additional alarming toxicological concern related to this NPS. Moreover, the co-treatments indicate that consuming both racemates will magnify the genotoxic effect, an aspect to consider given the unpredictability of illicit drug composition

    Genotoxic properties of synthetic cannabinoids on TK6 human cells by flow cytometry

    Get PDF
    Novel Psychoactive Substances (NPS) include several classes of substances such as synthetic cannabinoids (SCBs), an emerging alternative to marijuana, easily purchasable on internet. SCBs are more dangerous than 069-Tetrahydrocannabinol as a consequence of their stronger affinities for the CB1 and CB2 receptors, which may result in longer duration of distinct effects, greater potency, and toxicity. The information on SCBs cytotoxicity, genotoxicity, mutagenicity, and long-term effects is scarce. This fact suggests the urgent need to increase available data and to investigate if some SCBs have an impact on the stability of genetic material. Therefore, the aim of the present study was the evaluation of the mutagenic effect of different SCBs belonging to indole-and indazole-structures. The analyzes were conducted in vitro on human TK6 cells and mutagenicity were measured as micronucleus fold increase by flow cytometry. Our results have highlighted, for the first time, the mutagenic capacity of four SCBs, in particular in terms of chromosomal damage induction. We underline the serious potential toxicity of SCBs that suggests the need to proceed with the studies of other different synthetic compounds. Moreover, we identified a method that allows a rapid but effective screening of NPS placed on the market increasingly faster

    The formation of SCEs as an effect of occupational exposure to formaldehyde

    Get PDF
    Formaldehyde (FA) is a ubiquitous toxic chemical employed worldwide due to its disinfectant and preservative properties. Despite being classified as a human carcinogen, FA is still employed as formalin in pathology wards as standard fixative. We evaluated its relationship with the formation of sister-chromatid exchanges (SCEs) in cultured peripheral blood lymphocytes on 57 pathologists and 48 controls and the risk/protective role played by several genetic polymorphisms. All subjects were assessed for SCEs and genotyped for the most common cancer-associated gene polymorphisms: CYP1A1 exon 7 (A > G), CYP1A1*2A (T > C), CYP2C19*2 (G > A), GSTT1 (presence/absence), GSTM1 (presence/absence), GSTP1 (A > G), XRCC1 (G399A), XRCC1 (C194T), XRCC1 (A280G), XPC exon 15 (A939C), XPC exon 9 (C499T), TNFα − 308 G > A), IL10 − 1082 (G > A), and IL6 − 174 (G > C). Air-FA concentration was assessed through passive personal samplers. Pathologists, exposed to 55.2 μg/m(3) of air-FA, showed a significantly higher SCEs frequency than controls, exposed, respectively, to 18.4 μg/m(3). Air-FA was directly correlated with SCEs frequency and inversely with the replication index (RI). Regression models showed FA exposure as a significant predictor in developing SCEs, while did not highlight any role of the selected polymorphisms. Our study confirms the role of low air-FA levels as genotoxicity inductor, highlighting the importance to define exposure limits that could be safer for exposed workers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00204-022-03238-w

    Ghrelin regulates proliferation and differentiation of osteoblastic cells

    Get PDF
    Abstract It has previously been reported that growth hormone secretagogues (GHS) may have a role in the regulation of bone metabolism in animals and humans. In this study we evaluated the effect of ghrelin, the endogenous ligand of GHS receptors, on the proliferation rate and on osteoblast activity in primary cultures of rat calvaria osteoblasts. In the same experiments, we compared the effects of ghrelin with those of hexarelin (HEXA) and EP-40737, two synthetic GHS with different characteristics. Both ghrelin and HEXA (10(-11)-10(-8) M) significantly stimulated osteoblast proliferation at low concentrations (10(-10) M). Surprisingly, EP-40737 demonstrated an antiproliferative effect at 10(-9)-10(-8) M, whereas lower concentrations had no effect on cell proliferation. Ghrelin and HEXA significantly increased alkaline phosphatase (ALP) and osteocalcin (OC) production. At variance with these peptides, EP-40737 did not significantly stimulate ALP and OC. The mRNA for GHS-R1a receptors and the corresponding protein were detected in calvarial osteoblasts by RT-PCR and Western blot respectively, indicating that ghrelin and GHS may bind and activate this specific receptor. We conclude that endogenous ghrelin and synthetic GHS modulate proliferation and differentiation of rat osteoblasts, probably by acting on their specific receptor

    Catalytic pyrolysis of a residual plastic waste using zeolites produced by coal fly ash

    Get PDF
    The plastic film residue (PFR) of a plastic waste recycling process was selected as pyrolysis feed. Both thermal and catalytic pyrolysis experiments were performed and coal fly ash (CFA) and X zeolites synthesized from CFA (X/CFA) were used as pyrolysis catalysts. The main goal is to study the effect of low-cost catalysts on yields and quality of pyrolysis oils. NaX/CFA, obtained using the fusion/hydrothermal method, underwent ion exchange followed by calcination in order to produce HX/CFA. Firstly, thermogravimetry and differential scanning calorimetry (TG and DSC, respectively) analyses evaluated the effect of catalysts on the PFR degradation temperature and the process energy demand. Subsequently, pyrolysis was carried out in a bench scale reactor adopting the liquid-phase contact mode. HX/CFA and NaX/CFA reduced the degradation temperature of PFR from 753 to 680 and 744 K, respectively, while the degradation energy from 2.27 to 1.47 and 2.07 MJkg−1, respectively. Pyrolysis runs showed that the highest oil yield (44 wt %) was obtained by HX/CFA, while the main products obtained by thermal pyrolysis were wax and tar. Furthermore, up to 70% of HX/CFA oil was composed by gasoline range hydrocarbons. Finally, the produced gases showed a combustion energy up to 8 times higher than the pyrolysis energy needs

    Tracing the identity of Parmigiano Reggiano “Prodotto di Montagna - Progetto Territorio” cheese using NMR spectroscopy and multivariate data analysis

    Get PDF
    Background Nuclear magnetic resonance (NMR) spectroscopy is one of the well-established tools for food metabolomic analysis, as it proved to be very effective in authenticity and quality control of dairy products, as well as to follow product evolution during processing and storage. The analytical assessment of the EU mountain denomination label, specifically for Parmigiano Reggiano "Prodotto di Montagna - Progetto Territorio" (Mountain-CQ) cheese, has received limited attention. Although it was established in 2012 the EU mountain denomination label has not been much studied from an analytical point of view. Nonetheless, tracing a specific profile for the mountain products is essential to support the value chain of this specialty. Results The aim of the study was to produce an identity profile for Parmigiano Reggiano “Prodotto di Montagna - Progetto Territorio” (Mountain-CQ) cheese, and to differentiate it from Parmigiano Reggiano PDO samples (conventional-PDO) using 1H NMR spectroscopy coupled with multivariate data analysis. Three different approaches were applied and compared. First, the spectra-as-such were analysed after proper preprocessing. For the other two approaches, Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was used for signals resolution and features extraction, either individually on manually-defined spectral intervals or by reapplying MCR-ALS on the whole spectra with selectivity constraints using the reconstructed “pure profiles” as initial estimates and targets. All approaches provided comparable information regarding the samples’ distribution, as in all three cases the separation between the two product categories conventional-PDO and Mountain-CQ could be highlighted. Moreover, a novel MATLAB toolbox for features extraction via MCR-ALS was developed and used in synergy with the Chenomx library, allowing for a putative identification of the selected features. Significance A first identity profile for Parmigiano Reggiano “Prodotto di Montagna - Progetto Territorio” obtained by interpreting the metabolites signals in NMR spectroscopy was obtained. Our workflow and toolbox for generating the features dataset allows a more straightforward interpretation of the results, to overcome the limitations due to dimensionality and to peaks overlapping, but also to include the signals assignment and matching since the early stages of the data processing and analysis

    Cost-effectiveness of treating first-episode psychosis: five year follow-up results from an Italian early intervention programme

    Get PDF
    Aim: Early intervention programmes are expected to result in the reduction of illness severity in patients with schizophrenia, and contain healthcare costs by reducing hospital admissions and improving the social functioning of patients. This study aimed to investigate the costeffectiveness of treatment in an early intervention programme in comparison to standard care. Methods: Retrospective analysis of data prospectively recorded in an urban area (Milan, Italy). Twentythree patients from an early intervention programme and 23 patients from standard care with first-episode psychosis were evaluated on their use of services over a 5-year period. The Health of the Nation Outcome Scale was used to measure clinical status. Results: Significant changes with respect to initial assessment were recorded on the Health of the Nation Outcome Scale,with larger effect sizes in the early intervention programme than in the standard care group. Consequently, the cost-effectiveness ratio per reduced score of severity was lower in the early intervention programme than in standard care (\u20ac 4802 vs. \u20ac 9871), with an incremental costeffectiveness ratio, or net saving of \u20ac -1204 for every incremental reduced score of severity. Over time, greater recourse to hospital and residential facilities to obtain comparable improvement in symptoms resulted in a steady cost increase for the patients in standard care. Conclusions: Allocation of funds to specialized early intervention programmes is the best alternative, as it can save costs by reducing the use of hospitals and residential facilities, and may produce net savings of costs in the long term

    A metabolomic data fusion approach to support gliomas grading

    Get PDF
    Magnetic resonance imaging (MRI) is the current gold standard for the diagnosis of brain tumors. However, despite the development of MRI techniques, the differential diagnosis of central nervous system (CNS) primary pathologies, such as lymphoma and glioblastoma or tumor-like brain lesions and glioma, is often challenging. MRI can be supported by in vivo magnetic resonance spectroscopy (MRS) to enhance its diagnostic power and multiproject-multicenter evaluations of classification of brain tumors have shown that an accuracy around 90% can be achieved for most of the pairwise discrimination problems. However, the survival rate for patients affected by gliomas is still low. The High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance (HR-MAS NMR) metabolomics studies may be helpful for the discrimination of gliomas grades and the development of new strategies for clinical intervention. Here, we propose to use T2-filtered, diffusion-filtered and conventional water-presaturated spectra to try to extract as much information as possible, fusing the data gathered by these different NMR experiments and applying a chemometric approach based on Multivariate Curve Resolution (MCR). Biomarkers important for glioma's discrimination were found. In particular, we focused our attention on cystathionine (Cyst) that shows promise as a biomarker for the better prognosis of glioma tumors

    A metabolomic data fusion approach to support gliomas grading

    Get PDF
    Magnetic resonance imaging (MRI) is the current gold standard for the diagnosis of brain tumors. However, despite the development of MRI techniques, the differential diagnosis of central nervous system (CNS) primary pathologies, such as lymphoma and glioblastoma or tumor-like brain lesions and glioma, is often challenging. MRI can be supported by in vivo magnetic resonance spectroscopy (MRS) to enhance its diagnostic power and multiproject-multicenter evaluations of classification of brain tumors have shown that an accuracy around 90% can be achieved for most of the pairwise discrimination problems. However, the survival rate for patients affected by gliomas is still low. The High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance (HR-MAS NMR) metabolomics studies may be helpful for the discrimination of gliomas grades and the development of new strategies for clinical intervention. Here, we propose to use T2-filtered, diffusion-filtered and conventional water-presaturated spectra to try to extract as much information as possible, fusing the data gathered by these different NMR experiments and applying a chemometric approach based on Multivariate Curve Resolution (MCR). Biomarkers important for glioma's discrimination were found. In particular, we focused our attention on cystathionine (Cyst) that shows promise as a biomarker for the better prognosis of glioma tumors
    corecore