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Abstract 
Magnetic resonance imaging (MRI) is the current gold standard for the diagnosis of brain 

tumors. However, despite the development of MRI techniques, the differential diagnosis of 

central nervous system (CNS) primary pathologies, such as lymphoma and glioblastoma or 

tumor-like brain lesions and glioma, is often challenging. MRI can be supported by in vivo 

magnetic resonance spectroscopy (MRS) to enhance its diagnostic power and multiproject-

multicenter evaluations of classification of brain tumors have shown that an accuracy around 

90% can be achieved for most of the pairwise discrimination problems. However, the 

survival rate for patients affected by gliomas is still low. The High-Resolution Magic-Angle-

Spinning Nuclear Magnetic Resonance (HR-MAS NMR) metabolomics studies may be 

helpful for the discrimination of gliomas grades and the development of new strategies for 

clinical intervention. Here, we propose to use T2-filtered, diffusion-filtered and conventional 

water-presaturated spectra to try to extract as much information as possible, fusing the data 

gathered by these different NMR experiments and applying a chemometric approach based 

on Multivariate Curve Resolution (MCR). Biomarkers important for glioma’s discrimination 

were found. In particular, we focused our attention on cystathionine (Cyst) that shows 

promise as a biomarker for the better prognosis of glioma tumors.

Keywords: Gliomas, Brain tumors, Metabolomics, HR-MAS NMR, SIMCA, Multivariate 

Curve Resolution, Classification, Double cross-validation. 

Abbreviations
World Health Organization (WHO), Multivariate Curve Resolution (MCR), Magnetic 

resonance imaging (MRI), magnetic resonance spectroscopy (MRS), central nervous 

system (CNS), N-acetylaspartate (NAA), choline containing compounds (ChoCC), creatine 

(Cr), glutamate (Glu), glutamine (Gln), lactate (Lac), alanine (Ala), acetate (Ac), myo-inositol 

(Myo), glycine (Gly), taurine (Tau), glycerol in triacylglycerides (Glyctg), High-Resolution 

Magic-Angle-Spinning Nuclear Magnetic Resonance Spectroscopy (HR-MAS NMR), 

phosphocholine (PC), glycerophosphocholine (GPC), fatty acid (FA), phosphoethanolamine 

(PE), ß-glucose (Glc), arginine (Arg), isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), 

Principal Component Analysis (PCA), Partial least squares-discriminant analysis (PLS-DA), 

Soft Independent Modelling of Class Analogies (SIMCA), cystathionine (Cyst), hypotaurine 

(HTau), 2-hydroxyglutarate (2OHG), cystathionine-β-synthase (CBS), cystathionine 

gamma-lyase (CTH).
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1. INTRODUCTION
Primary brain tumors are central nervous system tumors (CNS) and they are relatively rare 

(1-2% of human cancers). Every year in Europe about 8-10 new cases every 100,000 

inhabitants are diagnosed, with a significant increase since 1970 in the industrialized 

Western countries. In the world, CNS tumors are ranked seventeenth for incidence and 

twelfth for mortality; the probability of developing a CNS tumor increases with age.1 Primary 

brain tumors are mainly gliomas, with a number of histology subtypes: glioblastoma is the 

glioma of grade IV, which is the most invasive and frequent; anaplastic astrocytoma and 

anaplastic oligodendroglioma are gliomas of grade III and low-grade astrocytoma and low-

grade oligodendroglioma are diffuse gliomas of grade II. Gliomas are classified into grades 

I to IV by the World Health Organization (WHO) using histopathological and clinical criteria. 

The new WHO 2016 classification prognosis is influenced by grading and biomolecular 

assessment in IDH mutation and MGMT methylation.2,3 About 60-70% of the primary brain 

tumors are glioblastomas and their prognosis is still poor, with a median of 12 -14 months 

of overall survival despite the new surgical, oncological and radiotherapeutic techniques.

Magnetic resonance imaging (MRI) is the current gold standard for the diagnosis of brain 

tumors. However, despite the development of MRI techniques, the differential diagnosis 

between CNS primary pathologies such as lymphoma and glioblastoma or tumour-like brain 

lesions and glioma or recurrent tumors and radionecrosis is often difficult.4 Further studies 

in neuro-oncology for the diagnosis and care of brain tumors are thus needed. MRI can be 

flanked by in vivo magnetic resonance spectroscopy (MRS) in order to enhance its 

diagnostic power and multiproject-multicenter assessments of classification of brain tumors 

have shown that an accuracy around 90% can be achieved for most of the pairwise 

discrimination problems.5

In vivo MRS provides, in principle, important metabolic information on tumors, detecting 

signals such as N-acetylaspartate (NAA), choline containing compounds (ChoCC) and 

creatine (Cr) and, in good quality spectra, also glutamate (Glu), glutamine (Gln), lactate 

(Lac), alanine (Ala) and other more overlapped signals from myo-inositol (Myo), glycine (Gly) 

and taurine (Tau). These metabolites are often aspecific and do not represent clear-cut 

markers for the different neuropathologies, even though recently Myo signals have been 

reported to be significantly higher in high-grade gliomas with respect to CNS lymphomas 

and lipid signals to be higher in gliomas with respect to other brain tumors.6 

A complementary approach can be represented by ex vivo High-Resolution Magic-Angle-

Spinning Nuclear Magnetic Resonance Spectroscopy (HR-MAS NMR) which enriches and 
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strengthens the interpretation bases of in vivo spectra. The number of identifiable 

metabolites found in ex vivo spectra using HR-MAS are about 10-fold those recognizable in 

in vivo spectra, due to higher resolution. For instance, HR-MAS NMR clearly shows, using 

two-dimensional techniques (COSY, TOCSY and HSQC), that the in vivo ChoCC peak 

receives contributions not only from choline (Cho), phosphocholine (PC) and 

glycerophosphocholine (GPC), but also from phosphoethanolamine (PE), (Myo, ß-glucose 

(Glc), Tau and arginine (Arg).7,8 

The ex vivo HR-MAS NMR spectra most amenable for multivariate analysis are those T2-

filtered, obtained applying a Carr–Purcell–Meiboom–Gill (CPMG) sequence. They retain 

signals from small metabolites undergoing fast motion, and hence characterized by narrow 

linewidths, whereas signals from slowly tumbling species (usually lipids and 

macromolecules) that give broad spectral components, partially observed as baseline 

distortions, are filtered off. Detailed studies on different grade gliomas based on statistics 

applied to CPMG spectra have been reported.9,10 Nevertheless, T2-filtered signals represent 

only a part of the spectroscopic information, the part related to slowly diffusing molecules 

can be found in diffusion-filtered experiments and all the NMR visible metabolites contribute 

to the basic water-presaturated pulse-and-acquire spectra. 

In this work, we evaluate not only T2-filtered spectra but we also try to extract as much 

information as possible from diffusion-filtered and conventional water-presaturated spectra 

fusing the data gathered by these different NMR experiments and then applying the 

Multivariate Curve Resolution (MCR) approach on each experiment individually. MCR 

coupled with an aligning method is particularly important on tissues, since the chemical shifts 

of the signals of the same metabolite can slightly change in the different samples, for 

instance due to slight pH variations. As these changes cannot be controlled by using buffers, 

as it is usually done in NMR on fluids, the alignment step can be used to avoid this potential 

issue.

Aims of this study are i) to investigate the different glioma grades and the biomarkers most 

important for their discrimination, taking advantage of the details that can be obtained by ex 

vivo HR-MAS NMR, in order to support the interpretation of in vivo MRS; ii) to gain further 

insight into the biochemistry of the tumor subtypes and iii) to help in the identification of 

metabolic alterations in biofluids, to be implemented in the screening for early diagnosis and 

for therapy planning. 
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2. EXPERIMENTAL SECTION
2.1 Patient population
This study was approved by the local ethics committee (CE 131/10, approved in 

07/09/2010). All patients received detailed information regarding the procedure and written 

informed consent was obtained. Based on pre-surgical MRI parameters, image-guided 

tissue samples (n = 44) were collected from 35 enrolled subjects by biopsy or surgical 

resection, as summarized in Table 1. 

The pre-surgery MRI (data not reported in this paper) were acquired and used to plan the 

tissue sample locations prior to surgery. Samples were collected from a specific tumoral 

area identified by MR images (the same analyzed by in vivo MRS) and transferred to the 

neuronavigation system (BrainLAB Inc., USA). Each sample was split into two parts; one 

was signed and used for standard histology, the other for HR-MAS NMR measurements. 

The last one was snap-frozen in liquid nitrogen and stored at -80 °C. The diagnosis of grade 

was assessed by a single pathologist on the basis of standard histological criteria. At the 

time of sample collection, the mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and 

IDH2) were not assessed. Mutations in IDH1 and IDH2 and complete codeletion of 

chromosome arms 1p and 19q have been recognized as favorable prognostic molecular 

markers. As these markers have represented a major breakthrough in the diagnosis of brain 

tumors, they have been integrated into the 2016 WHO classification of gliomas.3,11 The IDH 

mutation analysis was performed only for some patients with recurrent cancer.

2.2 HR-MAS Nuclear Magnetic Resonance Spectroscopy
HR-MAS NMR spectra were recorded with a Bruker Avance400 spectrometer (Bruker 

BioSpin, Karlsruhe, Germany) operating at a frequency of 400.13 MHz for 1H and 100.61 

for 13C. The instrument was equipped with a 1H,13C HR-MAS probe whose temperature was 

controlled by a Bruker Cooling Unit. The samples, 4-70 mg, were placed into a MAS zirconia 

rotor (4 mm outer d), added with 5-20 μL of D2O to provide deuterium for the lock system, 

and the volume was adjusted to 50 μL (or 12 μL in the case of very small samples) using 

the proper insert and then transferred into the probe cooled to 5 °C to prevent tissue 

degradation processes. The set up takes about 20 min. Experiments were performed at a 

temperature of 5 °C, spinning the samples at 4 kHz and three different types of one-

dimensional proton spectra were acquired12 using the sequences implemented in the Bruker 

software: (i) a composite pulse sequence (zgcppr, hereafter zg) with 2 s water presaturation 

during the relaxation delay, 8 kHz spectral width, 32k data points, 32 scans, (ii) a water-
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suppressed spin-echo CPMG sequence (cpmgpr, hereafter cpmg) with 2.5 s water 

presaturation during the relaxation delay, 1 ms echo time (τ) and 360 ms total spin–spin 

relaxation delay (2nτ), 8 kHz spectral width, 32k data points, 64 scans; and (iii) a sequence 

for diffusion measurements based on stimulated echo and bipolar-gradient pulses with 

longitudinal eddy current delay (ledbpgp2s1d, hereafter led) with big delta 200 ms, eddy 

current delay Te 5 ms, little delta 2*2 ms, sine-shaped gradient with 32 G/cm followed by a 

200 μs delay for gradient recovery, 8 kHz spectral width, 8k data points, 256 scans. 

Assignments of 1H signals were based on previous findings,7 checked with standard two-

dimensional homonuclear and heteronuclear techniques (COSY, TOCSY and HSQC) and 

compared with data from open-access databases, mainly HMDB (http://www.hmdb.ca/ 

version 4.0) and BRMB (http://www.bmrb.wisc.edu/).

2.3 Multivariate Data Analysis
Three data sets, corresponding to the three types of NMR spectra which were acquired, 
were considered, namely: led (4096 data points), cpmg (15000 data points) and zg (7500 

data points). The data analysis workflow consisted of the following steps: (i) preprocessing 

of each single data set; (ii) features extraction applying MCR; (iii) exploratory data analysis 

of each single data set (not reported for the sake of brevity) and on the fused data set by 

Principal Component Analysis (PCA); (iv) classification of the different glioma grades by two 

different approaches, namely class-modeling applying Soft Independent Modelling of Class 

Analogies (SIMCA) and Discriminant Analysis applying Partial Least Squares-Discriminant 

Analysis (PLS-DA). Given the limited number of samples, a double cross-validation scheme 

was applied for model validation. The salience of metabolites in differentiating the tumor 

grades were assessed using the discriminant power13 in SIMCA and Variables Important in 

Projection (VIPs),14 regression vectors and selectivity ratio15,16 in PLS-DA.

Each step is described in detail in the following sub-sections. 

2.3.1 NMR data preprocessing
The three different groups of spectra, namely zg, cpmg and led, were processed using the 

Bruker software, applying line broadening of 0.5, 0.5 and 5 Hz, respectively, prior to Fourier 

transformation, and then phase-corrected. The zg and cpmg spectra were referenced to the 

chemical shifts of the CH3 doublet of alanine at δ 1.48 ppm, whereas the led spectra were 

referenced to the CH3 peak of fatty acid (FA) chain at δ 0.89 ppm.

The zg NMR data points were reduced from 16k to 8k. The selected spectral width spanned 
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from δ 9 ppm to δ 0.05 ppm and the final number of data points was 7500. For the cpmg 

spectra, the NMR data points were reduced from 32k to 16k. The selected spectral width 

spanned from δ 9 ppm to δ 0.05 ppm and the final number of data points was 15000. Finally, 

for the led spectra, the NMR data points were reduced from 16k to 8k. The selected spectral 

width spanned from δ 9 ppm to δ 0.05 ppm and the number of final data points was 4k. All 

NMR data were exported in ASCII format and imported in Matlab using a routine written by 

us.

Preprocessing of NMR data was then performed on each spectral data set individually. The 

procedure consisted of three steps: denoising, baseline correction and peak alignment. 

Denoising was performed in wavelet (WT) domain17 applying a global threshold criterion18,19 

to the detail coefficients obtained by WT decomposition of the NMR spectra using a 

Daubechies 4 wavelet filter and 5 as decomposition level.

Baseline correction was then performed on the reconstructed denoised spectra by means 

of weighted asymmetric least-squares,20 fitting a fifth order polynomial. Next, the denoised 

and baseline-corrected spectra were aligned, first globally (i.e. rigidly shifting the whole 

spectrum) and then operating on a set of carefully defined intervals, which were individually 

aligned.

To this aim, the icoshift algorithm21 was used. The option ‘average’22 was selected both for 

the global and interval alignments: this setting performs the alignment procedure two times 

in a row, leading to better aligned peaks.

2.3.2 Features extraction and data fusion
MCR23 was successfully applied to extract features from the NMR spectra, allowing to obtain 

a total of 95 resolved components from the three data blocks, of which 49 were resolved 

from the zg spectral dataset, 27 from cpmg and 19 from led. A brief description of MCR is 

given hereinafter, while a detailed description can be found in the literature.24 MCR is a 

decomposition method based on Beer’s Law which allows to obtain a pure spectral profile 

Si and a vector of relative concentrations Ci (one concentration value for each sample) for 

each ith-extracted component. The pure spectral profiles carry the information about the 

signal’s shape and position and can be easily used for matching signals with metabolites by 

comparison with literature, spectral library data and previous knowledge.

MCR can recover pure contributions from overlapping signals applying the decomposition 

equation reported in Figure 1 and solving it by alternating least squares, starting from an 

initial guess of either matrix C (concentrations) or S (spectral profiles).23
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Given the complexity of the NMR spectrum, it has been demonstrated that working on 

intervals instead of the whole spectral width can improve interpretability and model 

performances. Differences due to baseline noise, signal intensity and metabolites can be 

more easily handled, and meaningful chemical quantifications can be obtained from each 

region.25

An initial spectral profiles S matrix was estimated by the SIMPLISMA algorithm,26,27 with 

10% maximum noise allowed. The non-negativity constraint was applied to both the 

concentrations and the profiles, using in both cases the fast non-negative least squares 

algorithm.28 Finally, the S matrix was normalized using the Euclidean norm. The maximum 

number of iterations was set to 500 and, whenever convergence was not reached within this 

limit, the evolution of the spectral profile of each resolved component was inspected, to 

confirm that the components of interest (those related to NMR signals) were stable enough 

at the last iteration.

<Figure 1>

Figure 1. Extraction of chemical features from NMR spectra through interval-based MCR 

modeling.

For each defined interval a distinct local MCR model was developed: the S profiles of the 

resolved components were inspected to select meaningful spectral profiles, while suspicious 

and baseline-like profiles were discarded. The identification of the resolved components was 

based on literature assignments, the digital libraries of HMDB and BMRB and our knowledge 

about the shape and position of the signals.7 

For each dataset, the concentration vectors corresponding to the identified components 

were organized into a new data matrix (MCR extracted features). The features matrices 

were then normalized by the sample's mass, to account for differences in signals’ intensity 

that could affect the correct sample characterization.

Once each data set (zg, cpmg and led) was resolved, the extracted features, named after 

the identified metabolites, were combined in a new dataset. This approach of combining 

features extracted from different sources is referred to as mid-level data fusion29,30 and all 

the results shown hereafter were obtained from the data-fused matrix (represented in blue 

in Figure 1). 

2.3.3 Exploratory analysis

Page 8 of 73

http://mc.manuscriptcentral.com/nbm

NMR in Biomedicine - For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

9

Exploratory data analysis was performed by PCA 31,32 on the autoscaled (i.e. the mean value 

was subtracted from each dataset’s column, which was then divided by its standard 

deviation) mid-level fused data set containing glioma samples of grade IV and III. Results 

are presented in the Results and Discussion section.

2.3.4 Classification analysis
Taking into account both the clinical relevance and the limited number of samples, especially 

of grade III, two distinct models were derived: (i) a one-class model for assessing if a glioma 

is of grade IV using SIMCA and (ii) a PLS-DA model to discriminate between grade IV and 

grade III gliomas. The basis of the two methods are briefly summarized below. 

2.3.5 SIMCA
SIMCA13,33 belongs to the class-modelling methods, in which each class is individually 

modeled, independently from the presence of other classes. The focus of class-modeling is 

on intra-class similarities, i.e. similarities among samples belonging to the same class, and 

the classification rule consists of establishing if a sample belongs to the modeled class or 

not. To capture characteristic class variability, SIMCA builds a distinct PCA model for each 

class being modeled (preprocessing is also applied distinctly to each class) and the number 

of PCs is established independently for each class and may differ for each of them.

The classification rule is then based on verification of whether a sample is accepted or 

rejected by the given class model in terms of distance of the sample to the class model. Two 

distances are defined: (i) the scores distance (T2), which indicates how far a sample is from 

the training objects of the class in the PC space, and (ii) the orthogonal distance, which 

measures the distance of a sample to the PC space of the class and is given by the sum of 

squared residuals (Q). The implementations of SIMCA34 may differ with respect to how these 

two distances are combined in an overall distance measure and on how the statistical 

acceptance limit, for this measure, is defined. In this work we used the implementation of 

the PLS_Toolbox (see Software section) that considers distinct statistics for T2 and Q and 

bases the classification rule on the reduced distance Dr: 

𝐷𝑟 =   ( 𝑇2

𝑇2
𝑙𝑖𝑚

)2

+  ( 𝑄
𝑄𝑙𝑖𝑚)2

In this implementation, a sample is accepted if its  from a given class is smaller or equal 𝐷𝑟

to the square root of 2 or rejected if it is higher. The classification performance of the model 

was evaluated in terms of class sensitivity, i.e. percentage of samples belonging to the class, 
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which are correctly accepted, and specificity, i.e. percentage of samples not belonging to 

the class, which are correctly rejected.

The class dimensionality was established according to the minimum classification error in 

leave-one-out cross-validation, which corresponds to a one-component model.

Validation of the model was carried out using Double cross-validation,35 as described below.

Interpretation of the SIMCA model in terms of salient metabolites for discriminating the 

samples with respect to the modeled classes can be accomplished calculating the variable 

discriminatory power.13 This parameter is calculated comparing the square residual 

standard deviations of a variable calculated for the objects when projected on the model of 

the class they do not belong to with respect to that of the class they belong to. The concept 

is that we expect the residuals of samples on a given variable being higher when fitted to a 

different class model with respect to their own, if this variable is important in discrimination. 

Therefore, this variable will have a higher value of discriminatory power. Since the 

discriminatory power is not upper bounded, we have used both the 95 percentile and the 

average of the calibration samples, as thresholds to assess the significance of each variable. 

Only to calculate the discriminatory power a SIMCA model for the grade III class was also 

evaluated.

2.3.6 PLS-DA
PLS-DA is a discriminant method36 in which discriminant boundaries among classes are 

computed. As opposed to SIMCA, this method focuses on the differences between the 

classes, so the classes are not individually modeled and therefore at least two classes have 

to be defined. Moreover, samples will necessarily be assigned to one of the modeled 

classes. PLS-DA is based on PLS regression14 where the dependent variables are dummy 

variables (one for each modeled class) taking values of 0 if the sample does not belong to 

the class and 1 when it belongs to it. Implementation of PLS-DA may differ on the basis of 

how the classification rule is defined. Here we use the rule to assign a sample to the class 

for which the predicted y-value is the highest (i.e., Y predicted values are continuous and 

not dummy as they were codified).

The number of PLS-DA components was established according to the minimum 

classification error in leave-one-out cross validation, which corresponds to a two-

components model. The performance of the model was established in terms of non-error 

classification rate, i.e. percentage of samples correctly assigned to the respective classes.
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2.3.7 Model validation: Double cross-validation
Double cross-validation (double CV) is an iterative procedure based on two cross-validation 

loops, one “external” and one “internal”. The internal loop is used to optimize the complexity 

of the model, while the external one is used to obtain prediction values for each one of the 

samples. The dataset is initially split into balanced segments, and it is processed according 

to these steps:

1. one segment j is excluded;

2. the remaining j–1 segments are used to build a series of models using a leave-one-

out CV scheme (internal loop), to compute the optimal complexity of each jth model;

3. once the optimal complexity is obtained, the jth model is built and the segment 

excluded in step 1 is predicted (external loop);

4. a set of prediction errors is stored.

Using this procedure, each sample is excluded and predicted one time, so one prediction 

value for each sample is obtained. These prediction errors are used to estimate the 

predictive capability of the model. A final calibration model is then built whose complexity 

(number of components) was established taking the median of the optimal complexity 

(established by the internal CV loop) of the j models.

Considering the presence of different number of replicates for each sample, here the internal 

and external segments have been customized, taking always replicates in the same 

segment. Moreover, in the case of PLS-DA representativeness of both classes in each 

segment was ensured.

Summarizing: the grade IV and III samples were divided into four balanced splits for the 

external loop, and for SIMCA modeling, only grade IV samples were considered in the 

modeling step.

2.3.8 Software
The whole data analysis process was carried out on MATLAB 2017b (Mathworks, MA, USA). 

PCA analysis was performed using the PLS_Toolbox 8.6 (Eigenvector Research Inc. WA, 

USA) and WT denoising using the Matlab Wavelet Toolbox19. NMR spectral alignment was 

operated using icoshift,21 (http://www.models.life.ku.dk/icoshift, last access 30/05/2019). 

NMR interval-resolution was operated by means of the MCR-ALS GUI by Joaquim Jaumot, 

Anna de Juan and Romà Tauler,37 (https://mcrals.wordpress.com/2014/11/17/mcr-als-gui-

2-0-reference-and-videos/, last access 30/05/2019). SIMCA analysis was performed using 

a MATLAB routine kindly provided by Prof. Federico Marini. PLS-DA classification rule, 
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SIMCA discriminant power and double-CV for SIMCA and PLS-DA were calculated using 

code implemented by us in MATLAB.

3 RESULTS AND DISCUSSION
A total of 35 subjects were evaluated, of which 3 patients with glioma II, 8 with glioma III, 19 

affected by glioma IV and 5 patients with preliminary diagnosis of glioma and then 

reclassified after histological analysis as lymphomas. More than 70% of patients died 

between the first and second year after surgery. Despite numerous treatment strategies, 

these data show that the survival rate is still low and the NMR metabolomics studies may 

be helpful for discrimination of gliomas grades and the development of new strategies for 

clinical intervention. Three one-dimensional experiments were recorded for each sample 

(Figure 2). The first one is a conventional 1H HR-MAS NMR spectrum with water 

presaturation (zg), which allows to detect the whole NMR visible metabolome of intact 

tissues, formed by both rapidly and slowly tumbling molecules that give narrow and broad 

lines, respectively. This is the real and complete fingerprint of a tissue. The second one is a 

T2-filtered spectrum, obtained through a cpmg sequence that filters off broad resonances, 

characterized by short spin-spin relaxation times (i.e. T2) and highlighting signals from small 

metabolites (mainly monosaccharides and polyols, aminoacids, organic acids and 

osmolites). The last one is a diffusion-edited led spectrum that retains the broad signals 

coming from slowly moving species (macromolecules and lipids) at expense of the narrow 

ones due to rapidly diffusing metabolites. 

<Figure 2>

Figure 2. 1H NMR spectra of a grade IV sample obtained with a zg sequence (a), a cpmg 

sequence (b) and a led sequence (c). The first one displays both narrow and broad signals, 

the second one retains the narrow signals from fast tumbling molecules, whereas the third 

one only the broad resonances from slowly tumbling species. Major metabolites are labelled: 

alanine (Ala), 2-aminoadipic acid (2-aa), adenine, adenosine, ascorbate (Asc), choline 

containing compound (ChoCC), creatine (Cr), glutamine (Gln), glutamate (Glu), 

glutamine+glutamate (Glx), glutathione (GSH), glycine (Gly), lactate (Lac), macromolecules 

(MM), NH, phosphocholine (PC), phenylalanine (Phe), scylloinositol (Scy), taurine (Tau), 

valine (Val).

The majority of HR-MAS NMR studies reported in the literature relies on cpmg spectra, as 
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they show resolved signals and flat baselines. Despite the predictable difficulties implicit in 

the processing of water-presaturated zg and diffusion-edited led spectra, we believe that 

restricting the statistical approach to cpmg data could limit the spectroscopic information 

that can be in principle gathered from tissues. We then tried to derive metabolic and grading 

knowledge from the combined statistical analysis of the three types of spectra. To this aim, 

zg, cpmg and led spectra were processed for each sample as described in the experimental 

section.

3.1 Exploratory analysis
A PCA model to explore the data was built prior to the classification step. Figure 3a shows 

a clear separation between grade III and IV samples, with some important exceptions. Three 

grade IV samples were found to be either extreme (04), extreme-borderline (28) or lying 

among the grade III samples (17). Two grade III samples also had interesting positions: 

sample 33-33_2 (replicates of the same specimen) was found in borderline position, while 

sample 22 was lying among the grade IV samples. This can be better seen in Figure 3b.

The separation evidenced by the dash-dotted red curve (a guide for the eye) in Figure 3 

correlates with neuroradiological characteristics of the two groups of tumors, in particular 

with the presence of necrosis and marked contrast enhancement in grade IV and with the 

absence of necrosis and the reduced contrast enhancement in grade III. Samples 17 and 

28 were classified by histological analysis as grade IV, but possess neuroradiological 

characteristics similar to those of grade III tumors, i.e. the absence of necrosis and the 

reduced contrast enhancement typical of grade III.

<Figure 3>

Figure 3. (a) PC1-2 score plot, also showing grade II, lymphoma and grade II and IV 

excluded samples; (b) zoom on the inter-class borderline zone, on samples 33 and 33_2. 

The dash-dotted red curve is a guide for the eye, see text.

Grade II gliomas and lymphomas were projected on this PCA model and they are also shown 

in Figure 3a. Lymphoma samples seem to be most similar to grade IV samples, while grade 

II gliomas are more similar to grade III gliomas.

It is evident that sample 04 is extreme, also compared to the other grade IV samples. 

Inspecting the corresponding T2-contribution plot (Figure S1 reported in the Supplementary 

Materials), which shows the contribution of the original variables in determining the scores 
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values of the samples, it emerges that its extreme position is mainly due to the significantly 

higher contributions from FAs. Sample 04 was obtained from a tumor lesion characterized 

by a cystic necrotic area, which could induce the high presence of FAs. Moreover, this 

sample, at the histological level, has features of atypical cells such as gemistocytic cells that 

define a different type of astrocytoma, that relapses and has a poor prognosis.

Based on this analysis, three grade IV samples (04, 17, 28) and one grade III sample (22) 

were not considered in the calibration set for the classification step. A summary of spectra 

considered in classification models is presented on Table 2. 

3.2 Classification analysis: SIMCA
Lymphomas and samples belonging to grade II were not considered in the classification 

modeling step, together with three samples of grade IV and one sample of grade III, as 

reported on Table 2. The total number of samples included for classification modelling was 

23 (32 spectra), with 7 (11 spectra) grade III and 16 (21 spectra) grade IV. Due to the rather 

reduced and class-unbalanced numbers of samples, it was decided to build a single-class 

SIMCA model, focusing on grade IV. Moreover, instead of dividing the dataset into a training 

and a test set, the double CV approach was employed. 

This allowed us to estimate sensitivity and specificity of the grade IV model in prediction 

using the classification assignments of the external loop. These results are reported in Table 

3 and Figure 4.

The model wrongly rejected only three grade IV samples out of 21 (03_1, 16, 19). It is 

important to clarify that samples 03_1 and 16 lie within the acceptance limit in Figure 4, 

because this figure refers to their estimation when they are present in the calibration set. 

However, the above two samples were rejected during the external cross-validation 

assessment, which is the information to be used when referring to predictive capability for 

grade IV samples.

The model wrongly accepted only one grade III sample (33) out of 11. It is interesting to 

notice that sample 33 was found in PCA (Figure 3b) very close to grade IV samples, together 

with its replicate 33_2, which was correctly rejected by the SIMCA model, but can be found 

very close to the acceptance limit in Figure 4. Samples 33 and 33_2 derive from the same 

cancer tissue, and their difference is probably due to the heterogeneity of the tissues.

<Figure 4>

Figure 4. Reduced Orthogonal distance (Q/Qlim) vs. reduced Scores distance (T2/T2
lim) of 

the SIMCA model built for the grade IV gliomas. The red circle highlights the acceptance 
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area, which is delimited by the reduced distance threshold, computed using the formula 

reported in the paragraph about SIMCA, under the Experimental Section. Symbols are 

reported in the legend; the symbols with lighter colors represent the twelve projected 

samples, i.e. 3 gliomas of grade II, 5 lymphomas, 1 glioma of grade III and 3 of grade IV, 

listed in the last column of Table 3, which were not considered in modeling, as reported in 

PCA analysis.

The grade II glioma and lymphoma samples listed in Table 3 were also predicted by the 

SIMCA model, and the prediction results are reported in Table 4. All the grade II samples 

were correctly rejected, but two lymphoma samples (23, 34) were wrongly accepted. 

A comparison of the metabolites’ relative content (peak areas obtained by MCR) of 

lymphoma samples 23 and 34 with respect to the correctly rejected ones reveals that the 

two rejected samples have significantly lower content of all metabolites. Moreover, sample 

05 was correctly rejected but it can be found close to the acceptance limit (Figure 4), and its 

profile resulted more similar to the two wrongly accepted samples (23, 34) than to the other 

two rejected ones (24, 31). Recently, a paper has been published about lymphoma tumor.38 

This paper focuses on the discrimination between malignant lymphomas and gliomas, and 

the authors report that it is usually difficult to preoperatively distinguish between the two. 

The use of MRS can be useful for preoperative diagnoses, and quantitative analysis is 

considered to be a valuable method for distinguishing between gliomas and malignant 

lymphomas. The limitation of the cited38 and of our study is the number of samples. 

As expected for their position in exploratory PCA model, the three glioma grade IV samples 

04, 17, 28 (“excluded” in Table 2) were wrongly rejected and the glioma grade III sample 22 

wrongly accepted. This last finding can be explained by the final diagnosis of 22 as 

xanthoastrocytoma.

3.3 Classification analysis: PLS-DA
Only samples belonging to grades III and IV were considered in this classification modeling 

step. As opposed to the SIMCA classification, it is not possible to predict samples belonging 

to classes different from grade III and IV using the PLS-DA model, as explained in the 

Multivariate data analysis section about PLS-DA. As with the SIMCA classification, instead 

of dividing the dataset into a training and a test set, the double CV approach was used. The 

model performance results are reported in Table 4.

As expected, the samples’ distribution in the scores space of the PLS-DA model (Figure 5) 
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resembles the one found in PCA (Figure 3), with a clear separation between the two classes. 

It is important to clarify the reason why the model wrongly predicted three samples, while 

Figure 5 shows a perfect separation between the two classes. As for the SIMCA model, the 

information obtained from the double CV is the one to be used when referring to the model’s 

predictive capability. Figure 5 refers instead to the model built using all the samples 

altogether, which generally performs better than the single models built in cross-validation.

It is interesting to inspect the position of the wrongly predicted samples. These samples 

result somehow extreme within their own class (Figure 5, labelled samples).

The PLS-DA model wrongly assigned sample 33_2 to grade IV, as opposed to the SIMCA 

model, which wrongly assigned sample 33 (a replicate of sample 33_2) to grade IV. These 

two replicates can be found close to each other in Figure 5, but also close to the grade IV 

samples. As already underlined, the difference found for these adjacent samples is probably 

due to the heterogeneity of the glioma sample. Furthermore, subject 33 was initially 

diagnosed with an oligodendroglioma that became an anaplastic tumor after a few years.

<Figure 5>

Figure 5. LV1-2 score plot showing grade III and grade IV samples. Labels are reported 

only for samples wrongly predicted using SIMCA (italics) or PLS-DA (red). Sample 19 is the 

only sample that was wrongly predicted by both methods.

3.4 Significant metabolites
In this section the SIMCA and PLS-DA sets of discriminant metabolites are compared. The 

shared metabolites are reported on Figure 6.

Twenty-eight discriminant signals were recovered by SIMCA, thirty-six were recovered by 

PLS-DA and twenty-one were found in common between the two classification methods. Six 

signals related to FAs were found, and the main source for them were the led NMR spectra. 

Maleschlijski and co-workers9 report that grade IV compared to grade III tumors have a 

higher content of FAs, and the same trend was found in our study, as it can be seen in 

Figure 6. In the same study, Cr and Myo are reported to be less abundant in grade IV 

compared to grade III tumors: this trend was also found in our study and it can be seen in 

Figure 6 as well.9 Other metabolites such as NAA,39 Cyst and acetate (Ac) follow the same 

descending trend (Figure 6).

<Figure 6>

Figure 6. Boxplots of discriminant metabolites (the values reported correspond to the 

resolved peak areas), most in agreement between SIMCA and PLS-DA. The grade III and 
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IV excluded from the classification, together with grade II and lymphoma samples, are 

plotted between each couple of box plots, for comparison.

These trends are also confirmed by Figure 7, where the discriminant metabolites important 

for grade IV (bars in blue) are mainly FAs, which are more abundant for this grade, while 

the other discriminant metabolites are important for grade III (bars in green) and are also 

more abundant for this grade. 

The role of FAs in the distinction between lymphomas and grade IV gliomas is still an open 

question. It has been suggested that their signals can be useful to distinguish between 

malignant lymphomas and gliomas, selecting regions without necrosis, for malignant 

lymphomas and glioblastomas have different mechanisms for the generation of FAs.38

In the case of gliomas, a higher FA peak is due to cystic or necrotic components,40 whereas, 

high lipids levels in malignant lymphomas seem to reflect the presence of activated or 

transformed lymphocytes and leukocytes that contain high levels of lipids.41 

 

<Figure 7>

Figure 7. Variables important in prediction (VIPs) for class IV (blue) and class III (green), 

only metabolites exceeding the VIP threshold (=1) are labelled. 

Most of the metabolites significant for the classification have already been reported, 

discussed and reviewed in the literature,42 when dealing with ex vivo spectroscopic results: 

the enhancement of signals from lipids (FA and Glyctg, in this study) and the decrease of Cr, 

NAA and Myo. This study sheds light on the importance of another metabolite: cystathionine 

(Cyst). While Cyst presence in the human brain is known,43 its detection by HR-MAS NMR 

in human brain tumors has not been reported so far. This could be due:

1. to the wide use in NMR metabolomics of 1H cpmg spectra alone, where signals from 

Cyst [HMDB00099] are less intense than in zg spectra;

2. to the position of some of its signals, that are close to those of ethanolamine (at 3.13 

ppm [HMDB00149]) and hypotaurine (HTau, at 2.66 ppm [HMDB00965]) and, if 2D 

experiments are not used to check them, these signals can be attributed to these two 

metabolites.

For this reason, we report in Figure 8 and 9 the fingerprints of Cyst and in Table S1 its 

chemical shifts (together with those of some selected metabolites). In details, the methylene 

protons of Cyst at 3.12 ppm correlate with a carbon at about 35 ppm, and not at 44 ppm as 
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in ethanolamine, and the methylene protons of Cyst at 2.73 ppm correlate with a carbon at 

30 ppm, and not at 58 ppm, as in the case of HTau. In some samples, both HTau and Cyst 

can be found and distinguished. In our samples instead, ethanolamine was present in small 

amounts and Cyst signals usually dominated 1H spectra in the region around 3.1 ppm, as 

can be seen from Figure 8. The T2 filter acts more on Cyst than on HTau, the signals of 

which become more evident in the cpmg spectrum.

<Figure 8>

Figure 8. 1H NMR water-presaturated spectra of a GIII sample obtained with a zg sequence 

(a) and a cpmg sequence (b). Signals from Cyst are marked by red squares. Signals from 

HTau are marked by blue squares. Those in broken line are highly overlapped to other 

signals. 

<Figure 9>

Figure 9. 2D NMR COSY (a) and HSQC (b) spectra of a GIII sample with Cyst correlations 

marked.

One recently published study has reported the first measurement of Cyst by in vivo MRS.44 

The identification of Cyst was confirmed comparing in vivo spectra acquired gliomas (with 

IDH mutations) with the Cyst spectrum measured in a phantom. In the present study we 

support these findings and the direct assignment of Cyst in vivo MRS. 

Finally, we want to stress the importance of verifying 1D 1H NMR assignments through 

selected 2D experiments, when possible. A signal (triplet) around 2.25 ppm can be attributed 

both to 2-aminoadipate and to 2-hydroxyglutarate (2OHG)10 and the assignment can be 

done on the basis of TOCSY spectra (see Figure S2 and Table S1). TOCSY correlations 

are very helpful in this respect and allowed us to assign it to 2-aminoadipate in seven 

samples and to 2OHG only in one. 

Cyst and 2OHG are considered important metabolites in cancer pathologies. Their role is 

related to IDH mutations. IDH mutations can be found in gliomas and are characterized by 

a specific cellular metabolism, causing the accumulation of 2OHG in tumor cells.45,46

Higher expression of cystathionine-β-synthase (CBS), the first enzyme of the 

transsulfuration pathway, has been associated with better prognosis in In IDH-mutated 

1p/19q codeleted gliomas.47 

Cyst derives from the condensation of homocysteine with serine catalyzed by CBS, which 

is the initial and rate-limiting step in the transsulfuration pathway. Cyst is subsequently 
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cleaved by the enzyme cystathionine gamma-lyase (CTH) to form cysteine, a precursor of 

GSH. Moreover, CBS participates in the desulfuration reactions that contribute to 

endogenous hydrogen sulfide production. Deregulation of CBS and the associated 

alterations in homocysteine and/or hydrogen sulfide levels leads to a wide range of 

pathological disturbances, and CBS activity also plays an important but complex role in 

cancer biology.48

Reduced serine biosynthesis may lead to increased reliance on the CBS/CTH pathway as 

a critical response to increased oxidative stress.47,49 In particular, high CBS expression has 

been shown to confer better prognosis in IDH-mutated 1p/19q codeleted gliomas47 in line 

with a previous study showing that decreased expression of CBS promotes glioma 

tumorigenesis in tumor xenografts.50 Correlation between higher CBS expression and 

survival in IDH-mutated 1p/19q codeleted gliomas has been confirmed also from the POLA 

public dataset.44 Fack et al have reported decreased Cyst in IDH mutant tumour xenografts 

compared with wild type, yet in the few samples reported in this last study, Cyst levels were 

roughly inversely correlated with codeletion status.47

4 CONCLUSIONS
This study highlights metabolic differences between anaplastic astrocytomas (grade III 

gliomas) and glioblastomas (grade IV gliomas), as identified at the time of the first diagnosis. 

The application of MCR allowed to efficiently extract important and meaningful metabolic 

details from the brain tumour samples obtained using HR-MAS NMR. This approach is 

particularly crucial on tissues, since slight changes in the chemical shifts of the signals of 

the same metabolites are commonly observed in the different specimens, and they cannot 

be controlled using buffers, as usually done in NMR on fluid samples.

The three one-dimensional spectra datasets under examination (zg, cpmg and led) were 

analysed and modeled together, within the framework of data fusion.

Two classification models of different nature (SIMCA, class-modelling vs PLS-DA, 

discriminant analysis) were built, leading in both cases to good classification rates as 

reported in Tables 3 and 4. Moreover, the two approaches provided valuable information on 

metabolites that can be utilized for the distinction between grade III and grade IV gliomas. 

Among these metabolites, Cyst surely is the most interesting result. Cyst and other related 

amino acids such as 2OHG identified in this study are relatively new in the MRS and HR-

MAS NMR panorama and they seem to be good candidates as markers to monitor brain 

cancer prognosis and treatments.
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Once again, we would like to underline that the use of 2D NMR spectra is essential for the 

correct assignment of metabolites with similar chemical shifts and signal shapes. 
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Figure Legends

Figure 1. Extraction of chemical features from NMR spectra through interval-based MCR 

modeling.

Figure 2. 1H NMR spectra of a grade IV sample obtained with a zg sequence (a), a cpmg 

sequence (b) and a led sequence (c). The first one displays both narrow and broad signals, 

the second one retains the narrow signals from fast tumbling molecules, whereas the third 

one only the broad resonances from slowly tumbling species. Major metabolites are labelled: 

alanine (Ala), 2-aminoadipic acid (2-aa), adenine, adenosine, ascorbate (Asc), choline 

containing compound (ChoCC), creatine (Cr), glutamine (Gln), glutamate (Glu), 

glutamine+glutamate (Glx), glutathione (GSH), glycine (Gly), lactate (Lac), macromolecules 

(MM), NH, phosphocholine (PC), phenylalanine (Phe), scylloinositol (Scy), taurine (Tau), 

valine (Val).

Figure 3. (a) PC1-2 score plot, also showing grade II, lymphoma and grade II and IV 

excluded samples; (b) zoom on the inter-class borderline zone, on samples 33 and 33_2. 

The dash-dotted red curve is a guide for the eye, see text.

Figure 4. Reduced Orthogonal distance (Q/Qlim) vs. reduced Scores distance (T2/T2
lim) of 

the SIMCA model built for the grade IV gliomas. The red circle highlights the acceptance 

area, which is delimited by the reduced distance threshold, computed using the formula 

reported in the paragraph about SIMCA, under the Experimental Section. Symbols are 

reported in the legend; the symbols with lighter colors represent the twelve projected 

samples i.e. 3 gliomas of grade II, 5 lymphomas, 1 glioma of grade III and 3 of grade IV, 

listed in the last column of Table 3, which were not considered in modeling, as reported in 

PCA analysis.

Figure 5. LV1-2 score plot showing grade III and grade IV samples. Labels are reported 

only for samples wrongly predicted using SIMCA (italics) or PLS-DA (red). Sample 19 is the 

only sample that was wrongly predicted by both methods.

Figure 6. Boxplots of discriminant metabolites (the values reported correspond to the 

resolved peak areas), most in agreement between SIMCA and PLS-DA. The grade III and 

IV excluded from the classification, together with grade II and lymphoma samples, are 

plotted between each couple of box plots, for comparison.

Figure 7. Variables important in prediction (VIPs) for class IV (blue) and class III (green), 

only metabolites exceeding the VIP threshold (=1) are labelled. 

Figure 8. 1H NMR water-presaturated spectra of a GIII sample obtained with a zg sequence 
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(a) and a cpmg sequence (b). Signals from Cyst are marked by red squares. Signals from 

HTau are marked by blue squares. Those in broken line are highly overlapped to other 

signals. 

Figure 9. 2D NMR COSY (a) and HSQC (b) spectra of a GIII sample with Cyst correlations 

marked.
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Table 1. Tissue samples and patient population

Diagnose Number of 
patients
(tissues samples)

Weight (mg) Age

Glioma grade IV 19 (24) 9.7÷70.7 45-75

Glioma grade III 8 (12) 7.9÷47.3 42-61

Glioma grade II 3 (3) 7.6÷19.8 42-47

Lymphoma 5 (5) 4.2÷25.8 35-78

Table 2. Spectra used for classification analysis

Diagnose total 
number
(44)

in SIMCA 
calibration 
set 
(21)

in PLS-DA 
calibration 
set 
(32)

excluded 
(12)

excluded 
samples' 
labels 

Glioma grade IV 24 21 21 3 04, 17, 28

Glioma grade III 12 0 11 1 22

Glioma grade II 3 0 0 3

Lymphoma 5 0 0 5

Table 3. SIMCA classification results in prediction

Diagnose Sensitivitya Specificityb
labels of wrongly 
predicted samples

Glioma grade IV 18/21 (86%) 03_1, 16, 19

Glioma grade III 10/11 (91%) 33

Glioma grade II 3/3

Lymphoma 3/5 23, 34
a number of correctly accepted / total number of samples belonging to the class (in 

parentheses as percentage)
b number of correctly rejected / total number of samples of the given class (in parentheses 

as percentage)
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Table 4. PLS-DA classification results in prediction

Diagnose non-error ratea
labels of wrongly 
predicted samples

Glioma grade IV 18/21 (86%) 19 (IV)

Glioma grade III 8/11 (73%) 33_2, 21 (III)
a number of correctly accepted / total number of samples belonging to the class (in 

parentheses as percentage)
b the Roman numbers in brackets are referred to the glioma grade to which the sample 

belongs to
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Abstract 
Magnetic resonance imaging (MRI) is the current gold standard for the diagnosis of brain 

tumors. However, despite the development of MRI techniques, the differential diagnosis of 

is often difficult in central nervous system (CNS) primitive central nervous system (CNS) 

primary pathologies, such as lymphoma and glioblastoma or tumor-like brain lesions and 

glioma, is often challenging. MRI can be supported by in vivo magnetic resonance 

spectroscopy (MRS) to enhance its diagnostic power and multiproject-multicenter 

evaluations of classification of brain tumors have shown that an accuracy around 90% can 

be achieved for most of the pairwise discrimination problems. However, the survival rate for 

patients affected by gliomas is still low for patients affected by gliomas. The High-Resolution 

Magic-Angle-Spinning Nuclear Magnetic Resonance (HR-MAS NMR) metabolomics studies 

may be helpful for the discrimination of gliomas grades and the development of new 

strategies for clinical intervention. Here, wWe propose to evaluate use not only T2-filtered 

spectra but also, diffusion-filtered and conventional water-presaturated spectra to try to 

extract as much information as possible, from diffusion-filtered and conventional water-

presaturated spectra fusing the data gathered by these different NMR experiments and 

applying a chemometric approach based on Multivariate Curve Resolution (MCR). 

Biomarkers important for glioma’s discrimination were found. In particular, we focused our 

attention on cystathionine (Cyst) that seems shows promise as an important biomarker for 

a the better prognosis of glioma tumors.

Keywords: Gliomas, Brain tumors, Metabolomics, HR-MAS NMR, SIMCA, Multivariate 

Curve Resolution, Classification, Double cross-validation. 

Abbreviations
World Health Organization (WHO), Multivariate Curve Resolution (MCR), Magnetic 

resonance imaging (MRI), magnetic resonance spectroscopy (MRS), central nervous 

system (CNS), N-acetylaspartate (NAA), choline containing compounds (ChoCC), creatine 

(Cr), glutamate (Glu), glutamine (Gln), lactate (Lac), alanine (Ala), acetate (Ac), myo-inositol 

(Myo), glycine (Gly), taurine (Tau), glycerol in triacylglycerides (Glyctg), High-Resolution 

Magic-Angle-Spinning Nuclear Magnetic Resonance Spectroscopy (HR-MAS NMR), 

phosphocholine (PC), glycerophosphocholine (GPC), fatty acid (FA), phosphoethanolamine 

(PE), ß-glucose (Glc), arginine (Arg), isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), 

Principal Component Analysis (PCA), Partial least squares-discriminant analysis (PLS-DA), 
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Soft Independent Modelling of Class Analogies (SIMCA), cystathionine (Cyst), hypotaurine 

(HTau), 2-hydroxyglutarate (2OHG), cystathionine-β-synthase (CBS), cystathionine 

gamma-lyase (CTH).
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1. INTRODUCTION
Primitive Primary brain tumors are central nervous system tumors (CNS) and they are 

relatively rare (1-2% of human cancers). Every year in Europe about 8-10 new cases every 

100,000 inhabitants are diagnosed, with a significant increase since 1970 in the 

industrialized Western countries. In the world, CNS tumors are ranked seventeenth for 

incidence and twelfth for mortality.; Tthe probability of getting sick developing a CNS tumor 

increases with age. When mortality is considered, brain tumors move up to the twelfth 

position.1 Primitive Primary brain tumors are mainly gliomas, with a number of histology 

subtypes: glioblastoma is the glioma of grade IV, which is the most invasive and frequent; 

anaplastic astrocytoma and anaplastic oligodendroglioma are gliomas of grade III and low-

grade astrocytoma and low-grade oligodendroglioma are diffuse gliomas of grade II. 

Gliomas are classified into grades I to IV by the World Health Organization (WHO) using 

histopathological and clinical criteria. The new WHO 2016 classification prognosis is 

influenced by grading and biomolecular assessment in IDH mutation and MGMT 

methylation.2,3 About 60-70% of primitive the primary brain tumors are glioblastomas and 

their prognosis is still poor, with a median of 12 -14 months of overall survival despite the 

new surgical, oncological and radiotherapeutic techniquesologies.

Magnetic resonance imaging (MRI) is the current gold standard for the diagnosis of brain 

tumors. However, despite the development of MRI techniques, the differential diagnosis 

between is often difficult in CNS primitive primary pathologies pathology such as lymphoma 

and glioblastoma or flogistic diseases tumour-like brain lesions and glioma or recurrent 

tumors and radionecrosis is often difficult.4 Further studies in neuro-oncology for the 

diagnosis and care of brain tumors are thus needed. MRI can be flanked by in vivo magnetic 

resonance spectroscopy (MRS) in order to enhance its diagnostic power and multiproject-

multicenter evaluations assessments of classification of brain tumors have shown that an 

accuracy around 90% can be achieved for most of the pairwise discrimination problems.5

In vivo MRS provides, in principle, important metabolic information on tumors, detecting 

signals such as N-acetylaspartate (NAA), choline containing compounds (ChoCC) and 

creatine (Cr) and, in good quality spectra, also glutamate (Glu), glutamine (Gln), lactate 

(Lac), alanine (Ala) and other more overlapped signals from myo-inositol (Myo), glycine (Gly) 

and taurine (Tau). These metabolites are often aspecific and do not represent clear-cut 

markers for the different neuropathologies, even though recently Myo signals have been 

reported to be significantly higher in high-grade gliomas with respect to CNS lymphomas 

and lipid signals to be higher in gliomas with respect to other brain tumors.6 
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A complementary approach can be represented by ex vivo High-Resolution Magic-Angle-

Spinning Nuclear Magnetic Resonance Spectroscopy (HR-MAS NMR) which enriches and 

strengthens the interpretation bases of in vivo spectra. The number of identifiable 

metabolites found in ex vivo spectra using HR-MAS are about 10-fold those recognizable in 

in vivo spectra, due to higher resolution. For instance, HR-MAS NMR clearly shows, using 

two-dimensional techniques (COSY, TOCSY and HSQC), that the in vivo ChoCC peak 

receives contributions not only from choline (Cho), phosphocholine (PC) and 

glycerophosphocholine (GPC), but also from phosphoethanolamine (PE), (Myo, ß-glucose 

(Glc), Tau and arginine (Arg).7,8 

The ex vivo HR-MAS NMR spectra most amenable for multivariate analysis are those T2-

filtered, obtained applying a Carr–Purcell–Meiboom–Gill (CPMG) sequence. They retain 

signals from small metabolites undergoing fast motion, and hence characterized by narrow 

linewidths, whereas signals from slowly tumbling species (usually lipids and 

macromolecules) that give broad spectral components, partially observed as baseline 

distortions, are filtered off. Detailed studies on different grade gliomas based on statistics 

applied to CPMG spectra have been reported.9,10 Nevertheless, T2-filtered signals represent 

only a part of the spectroscopic information, the part related to slowly diffusing molecules 

can be found in diffusion-filtered experiments and all the NMR visible metabolites contribute 

to the basic water-presaturated pulse-and-acquire spectra. 

In this work, we evaluate not only T2-filtered spectra but we also try to extract as much 

information as possible from diffusion-filtered and conventional water-presaturated spectra 

fusing the data gathered by these different NMR experiments and then applying the 

Multivariate Curve Resolution (MCR) approach on each experiment individually. MCR 

coupled with an aligning method is particularly important on tissues, since the chemical shifts 

of the signals of the same metabolite can slightly change in the different samples, for 

instance due to slight pH variations:. As these changes cannot be controlled by using 

buffers, as it is usually done in NMR on fluids, therefore the alignment step can be used to 

avoid for taking care of this potential issue.

The goals Aims of this study are i) to investigate the different glioma grades and the 

biomarkers most important for their discrimination, taking advantage of the details that can 

be obtained by ex vivo HR-MAS NMR, in order to support the interpretation of in vivo MRS, 

thanks to the details that can be obtained by ex vivo HR-MAS NMR,; ii) to gain further insight 

into the biochemistry of the tumor subtypes, and iii) to help in the detection identification of 

metabolic alterations in biofluids, to be used implemented in the screening for early 
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diagnosis and for therapy planning. 
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2. EXPERIMENTAL SECTION
2.1 Patient population
This study was approved by the local ethics committee (CE 131/10, approved in 

07/09/2010). All patients received detailed information regarding the procedure and written 

informed consent was obtained. Based on pre-surgical MRI parameters, image-guided 

tissue samples (n = 44) were collected from 35 enrolled subjects by biopsy or surgical 

resection, as summarized in Table 1. 

The pre-surgery MRI (data not reported in this paper) were acquired and used to plan the 

tissue sample locations prior to surgery. Samples were collected from a specific tumoral 

area identified by MR images (the same analyzed by in vivo MRS) and transferred to the 

neuronavigation system (BrainLAB Inc., USA). Each sample was split into two parts; one 

was signed and used for standard histology, the other for HR-MAS NMR measurements. 

The last one was snap-frozen in liquid nitrogen and stored at -80 °C. The diagnosis of grade 

was assessed by a single pathologist on the basis of standard histological criteria. At the 

time of sample collection, the mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and 

IDH2) were not assessed. Mutations in IDH1 and IDH2 and complete codeletion of 

chromosome arms 1p and 19q have been recognized as favorable prognostic molecular 

markers. As these markers have represented a major breakthrough in the diagnosis of brain 

tumors, they have been integrated into the 2016 WHO classification of gliomas.3,11 The IDH 

mutation analysis was performed Oonly for some patients with recurrent cancer was 

performed the IDH mutation analysis.

2.2 HR-MAS Nuclear Magnetic Resonance Spectroscopy
HR-MAS NMR spectra were recorded with a Bruker Avance400 spectrometer (Bruker 

BioSpin, Karlsruhe, Germany) operating at a frequency of 400.13 MHz for 1H and 100.61 

for 13C. The instrument was equipped with a 1H,13C HR-MAS probe whose temperature was 

controlled by a Bruker Cooling Unit. The samples, 4-70 mg, were placed into a MAS zirconia 

rotor (4 mm outer d), added with 5-20 μL of D2O to provide deuterium for the lock system, 

and the volume was adjusted to 50 μL (or 12 μL in the case of very small samples) using 

the proper insert and then transferred into the probe cooled to 5 °C to prevent tissue 

degradation processes. The set up takes about 20 min. Experiments were performed at a 

temperature of 5 °C, spinning the samples at 4 kHz and three different types of one-

dimensional proton spectra were acquired12 using the sequences implemented in the Bruker 

software: (i) a composite pulse sequence (zgcppr, hereafter zg) with 2 s water presaturation 
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during the relaxation delay, 8 kHz spectral width, 32k data points, 32 scans, (ii) a water-

suppressed spin-echo CPMG sequence (cpmgpr, hereafter cpmg) with 2.5 s water 

presaturation during the relaxation delay, 1 ms echo time (τ) and 360 ms total spin–spin 

relaxation delay (2nτ), 8 kHz spectral width, 32k data points, 64 scans; and (iii) a sequence 

for diffusion measurements based on stimulated echo and bipolar-gradient pulses with 

longitudinal eddy current delay (ledbpgp2s1d, hereafter led) with big delta 200 ms, eddy 

current delay Te 5 ms, little delta 2*2 ms, sine-shaped gradient with 32 G/cm followed by a 

200 μs delay for gradient recovery, 8 kHz spectral width, 8k data points, 256 scans. 

Assignments of 1H signals were based on previous workfindings,7 checked with standard 

two-dimensional homonuclear and heteronuclear techniques (COSY, TOCSY and HSQC) 

and compared with data in from open-access databases, mainly HMDB 

(http://www.hmdb.ca/ version 4.0) and BRMB (http://www.bmrb.wisc.edu/).

2.3 Multivariate Data Analysis
Three data sets were considered, corresponding to the three types of NMR spectra which 

were acquired, were considered, namely: led (4096 data points), cpmg (15000 data points) 

and zg (7500 data points). The data analysis workflow consisted of the following steps: (i) 

preprocessing of each single data set; (ii) features extraction applying MCR; (iii) exploratory 

data analysis of each single data set (not reported for the sake of brevity) and on the fused 

data set by Principal Component Analysis (PCA); (iv) classification (iv) of the different glioma 

grades by two different approaches, namely class-modeling applying Soft Independent 

Modelling of Class Analogies (SIMCA) and Ddiscriminant Aanalysis applying Partial Least 

Squares-Discriminant Analysis (PLS-DA). Considering Given the limited number of 

samples, a double cross-validation scheme was applied for model validation. The salience 

of metabolites in differentiating the tumor grades were assessed using the discriminant 

power13 in SIMCA and vVariables Iimportant in Pprojection (VIPs),14 regression vectors and 

selectivity ratio15,16 in PLS-DA.

Each step is described in detail detailed in the following sub-sections. 

2.3.1 NMR data preprocessing
The three different groups of spectra, namely zg, cpmg and led, were processed using the 

Bruker software, applying line broadening of 0.5, 0.5 and 5 Hz line broadening, respectively, 

prior to Fourier transformation, and then phase-corrected. The zg and cpmg spectra were 

referenced to the chemical shifts of the CH3 doublet of alanine at δ 1.48 ppm, whereas the 
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led spectra were referenced to the CH3 peak of fatty acid (FA) chain at δ 0.89 ppm.

The zg NMR data points were reduced from 16k to 8k. The selected spectral width spanned 

from δ 9 ppm to δ 0.05 ppm and the final number of data points was 7500. For the cpmg 

spectra, the NMR data points were reduced from 32k to 16k. The selected spectral width 

spanned from δ 9 ppm to δ 0.05 ppm and the final number of data points was 15000. Finally, 

for the led spectra, the NMR data points were reduced from 16k to 8k. The selected spectral 

width spanned from δ 9 ppm to δ 0.05 ppm and the number of final data points was 4k. All 

the NMR data were exported in ASCII format and imported in Matlab using a routine written 

by us.

Preprocessing of NMR data was then performed on each spectral data set individually. The 

procedure consisted of three steps: denoising, baseline correction and peak alignment. 

Denoising was performed in wavelet (WT) domain17 applying a global threshold criterion18,19 

to the detail coefficients obtained by WT decomposition of the NMR spectra using a 

Daubechies 4 wavelet filter and 5 as decomposition level.

Baseline correction was then performed on the reconstructed denoised spectra by means 

of weighted asymmetric least-squares,20 fitting a fifth order polynomial. Next, the denoised 

and baseline-corrected spectra were aligned, first globally (i.e. rigidly shifting the whole 

spectrum) and then operating on a set of carefully defined intervals, which were individually 

aligned.

To this aim, the icoshift algorithm21 was used. The option ‘average’22 was selected both for 

the global and interval alignments: this setting performs the alignment procedure two times 

in a row, leading to better aligned peaks.

2.3.2 Features extraction and data fusion
MCR23 was successfully applied to extract features from the NMR spectra, allowing to obtain 

a total of 95 resolved components from the three data blocks, of which 49 were resolved 

from the zg spectral dataset, 27 from cpmg and 19 from led. A brief description of MCR is 

given hereinafter, while a detailed description can be found in the literature.24 MCR is a 

decomposition method based on Beer’s Law which allows obtaining to obtain a pure spectral 

profile Si and a vector of relative concentrations Ci (one concentration value for each sample) 

for each ith-extracted component. The pure spectral profiles carry the information about the 

signal’s shape and position and can be easily used for matching signals with metabolites by 

comparison with literature, spectral library data and previous knowledge.

MCR can recover pure contributions from overlapping signals applying the decomposition 
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equation reported in Figure 1 and solving it by alternating least squares, starting from an 

initial guess of either matrix C (concentrations) or S (spectral profiles).23

Given the complexity of the NMR spectrum, it has been demonstrated that working on 

intervals instead of the whole spectral width can improve interpretability and model 

performances. Differences due to baseline noise, signal intensity and metabolites can be 

more easily handled, and meaningful chemical quantifications can be obtained from each 

region.25

An initial spectral profiles S matrix was estimated by means of the SIMPLISMA 

algorithm,26,27 with 10% maximum noise allowed. The non-negativity constraint was applied 

to both the concentrations and the profiles, using in both cases the fast non-negative least 

squares algorithm.28 Finally, the S matrix was normalized using the Euclidean norm. The M 

maximum number of iterations was set to 500, and, in those cases when whenever 

convergence was not reached within this limit, the profiles’ evolution of the spectral profile 

of each resolved component was inspected, to make sure confirm that the components of 

interest (those related to NMR signals) were stable enough at the last iteration.

<Figure 1>

Figure 1. Extraction of chemical features from NMR spectra through interval-based MCR 

modeling.

For each defined interval a distinct local MCR model was developed: the S profiles of the 

resolved components were inspected to select meaningful spectral profiles, while suspicious 

and baseline-like profiles were discarded. The identification of the resolved components was 

based on literature assignments, the digital libraries of HMDB and BMRB and our knowledge 

about the shape and position of the signals.7 

For each dataset, the concentration vectors corresponding to the identified components 

were organized into a new data matrix (MCR extracted features). The features matrices 

were then normalized by the sample's mass, to account for differences in signals’ intensity 

that could affect the correct sample characterization.

Once each data set (zg, cpmg and led) was resolved, the extracted features, named after 

the identified metabolites, were combined in a new dataset. This approach of combining 

features extracted from different sources is referred to as mid-level data fusion29,30 and all 

the results shown hereafter were obtained from the data-fused matrix (represented in blue 

in Figure 1). 
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2.3.3 Exploratory analysis
Exploratory data analysis was performed using by PCA 31,32 on the autoscaled (i.e. the mean 

value was subtracted from each dataset’s column, which was then divided by its standard 

deviation) mid-level fused data set containing glioma samples of grade IV and III. Results 

are presented in the Results and Discussion section.

2.3.4 Classification analysis
Taking into account both the clinical relevance and the limited number of samples, especially 

of grade III, two distinct models were derived: (i) a one-class model for assessing if a glioma 

is of grade IV using SIMCA and (ii) a PLS-DA model to discriminate between grade IV and 

grade III gliomas. The basis of the two methods are briefly summarized below. The basics 

of the two methods are briefly recalled.

2.3.5 SIMCA
SIMCA13,33 belongs to the class-modelling methods, in which each class is individually 

modeled, independently from the presence of other classes. The focus of class-modeling is 

on intra-class similarities, i.e. similarities among samples belonging to the same class, and 

the classification rule consists of establishing if a sample belongs to the modeled class or 

not. To capture characteristic class variability, SIMCA builds a distinct PCA model for each 

class being modeled (it is worth recalling that preprocessing is also applied distinctly to each 

class) and the number of PCs is established independently for each class and may differ for 

each of them.

The classification rule is then based on verification of whether a sample is accepted or 

rejected by the given class model in terms of distance of the sample to the class model. Two 

distances are defined: (i) the scores distance (T2), which indicates how far a sample is from 

the training objects of the class in the PC space, and (ii) the orthogonal distance, which 

measures the distance of a sample to the PC space of the class and is given by the sum of 

squared residuals (Q). The implementations of SIMCA34 may differ with respect to how these 

two distances are combined in an overall distance measure and on how the statistical 

acceptance limit, for this measure, is defined. In this work we used the implementation of 

the PLS_Toolbox (see Software section) that considers distinct statistics for T2 and Q and 

bases the classification rule on the reduced distance Dr: 
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𝐷𝑟 =   ( 𝑇2

𝑇2
𝑙𝑖𝑚

)2

+  ( 𝑄
𝑄𝑙𝑖𝑚)2

Based on that In this implementation, a sample is accepted if its  from a given class is 𝐷𝑟

smaller or equal to the square root of 2 or rejected if it is higher. The classification 

performance of the model was evaluated in terms of class sensitivity, i.e. percentage of 

samples belonging to the class, which are correctly accepted, and specificity, i.e. percentage 

of samples not belonging to the class, which are correctly rejected.

The class dimensionality was established according to the minimum classification error in 

leave-one-out cross-validation, which corresponds to a one-component model.

Validation of the model was done carried out using Double cross-validation,35 as described 

below.

Interpretation of the SIMCA model in terms of salient metabolites for discriminating the 

samples with respect to the modeled classes can be accomplished calculating the variable 

discriminatory power.13 This parameter is calculated comparing the square residual 

standard deviations of a variable calculated for the objects when projected on the model of 

the class they do not belong to with respect to that of the class they belong to. The concept 

is that we expect the residuals of samples on a given variable being higher when fitted to a 

different class model with respect to their own, if this variable is important in discrimination. 

Therefore, this variable will have a higher value of discriminatory power. Since the 

discriminatory power is not upper bounded, we have used both the 95 percentile and the 

average of the calibration samples, as thresholds to assess the significance of each variable. 

Only to calculate the discriminatory power a SIMCA model for the grade III class was also 

evaluated.

2.3.6 PLS-DA
PLS-DA is a discriminant method36 in which discriminant boundaries among classes are 

computed. As opposed to SIMCA, this method focuses on the differences between the 

classes, so the classes are not individually modeled and therefore at least two classes have 

to be defined. Moreover, samples will necessarily be assigned to one of the modeled 

classes. PLS-DA is based on PLS regression14 where the dependent variables are dummy 

variables (one for each modeled class) taking values of 0 if the sample does not belong to 

the class and 1 when it belongs to it. Implementation of PLS-DA may differ on the basis of 

how the classification rule is defined. Here we use the rule to assign a sample to the class 

for which the predicted y-value is the highest (i.e., Y predicted values are continuous and 
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not dummy as they were codified).

The number of PLS-DA components was established according to the minimum 

classification error in leave-one-out cross validation, which corresponds to a two-

components model. The performance of the model was established in terms of non-error 

classification rate, i.e. percentage of samples correctly assigned to the respective classes.

2.3.7 Model validation: Double cross-validation
Double cross-validation (double CV) is an iterative procedure based on two cross-validation 

loops, one “external” and one “internal”. The internal loop is used to optimize the complexity 

of the model, while the external one is used to obtain prediction values for each one of the 

samples. The dataset is initially split into balanced segments, and it is processed according 

to these steps:

1. one segment j is excluded;

2. the remaining j–1 segments are used to build a series of models using a leave-one-

out CV scheme (internal loop), to compute the optimal complexity of each jth model;

3. once the optimal complexity is obtained, the jth model is built and the segment 

excluded in step 1 is predicted (external loop);

4. a set of prediction errors is stored.

Using this procedure, each sample is excluded and predicted one time, so one prediction 

value for each sample is obtained. These prediction errors are used to estimate the 

predictive capability of the model. A final calibration model is then built whose complexity 

(number of components) was established taking the median of the optimal complexity 

(established by the internal CV loop) of the j models.

Considering the presence of different number of replicates for each sample, here the internal 

and external segments have been customized, taking always replicates in the same 

segment. Moreover, in the case of PLS-DA representativeness of both classes in each 

segment was ensured.

Summarizing: the grade IV and III samples were divided into four balanced splits for the 

external loop, and for SIMCA modeling, only grade IV samples were considered in the 

modeling step.

2.3.8 Software
The whole data analysis process was carried out on MATLAB 2017b (Mathworks, MA, USA). 

PCA analysis was performed using the PLS_Toolbox 8.6 (Eigenvector Research Inc. WA, 
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USA) and WT denoising using the Matlab Wavelet Toolbox19. NMR spectral alignment was 

operated using icoshift,21 (http://www.models.life.ku.dk/icoshift, last access 30/05/2019). 

NMR interval-resolution was operated by means of the MCR-ALS GUI by Joaquim Jaumot, 

Anna de Juan and Romà Tauler,37 (https://mcrals.wordpress.com/2014/11/17/mcr-als-gui-

2-0-reference-and-videos/, last access 30/05/2019). SIMCA analysis was performed using 

a MATLAB routine kindly provided by Prof. Federico Marini. PLS-DA classification rule, 

SIMCA discriminant power and double-CV for SIMCA and PLS-DA were calculated using 

code implemented by us in MATLAB.

3 RESULTS AND DISCUSSION
A total of 35 subjects were evaluated, of which 3 patients with glioma II, 8 with glioma III, 19 

affected by glioma IV and 5 patients with preliminary diagnosis of glioma and then 

reclassified after histological analysis as lymphomas. More than 70% of patients died 

between the first and second year after the surgery. Despite numerous treatment strategies, 

these data show that the survival rate is still low and the NMR metabolomics studies may 

be helpful for discrimination of gliomas grades and the development of new strategies for 

clinical intervention. Three one-dimensional experiments were recorded for each sample 

(Figure 2). The first one is a conventional 1H HR-MAS NMR spectrum with water 

presaturation (zg), that permits which allows to detect the whole NMR visible metabolome 

of intact tissues, formed by both rapidly and slowly tumbling molecules that give narrow and 

broad lines, respectively. This is the real and complete fingerprint of a tissue. The second 

one is a T2-filtered spectrum, obtained through a cpmg sequence that filters off broad 

resonances, characterized by short spin-spin relaxation times (i.e. T2) and highlighting 

signals from small metabolites (mainly monosaccharides and polyols, aminoacids, organic 

acids and osmolites). The last one is a diffusion-edited led spectrum that retains the broad 

signals coming from slowly moving species (macromolecules and lipids) at expense of the 

narrow ones due to rapidly diffusing metabolites. 

<Figure 2>

Figure 2. 1H NMR spectra of a grade IV sample obtained with a zg sequence (a), a cpmg 

sequence (b) and a led sequence (c). The first one displays both narrow and broad signals, 

the second one retains the narrow signals from fast tumbling molecules, whereas the third 

one only the broad resonances from slowly tumbling species. Major metabolites are labelled: 

alanine (Ala), 2-aminoadipic acid (2-aa), adenine, adenosine, ascorbate (Asc), choline 
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containing compound (ChoCC), creatine (Cr), glutamine (Gln), glutamate (Glu), 

glutamine+glutamate (Glx), glutathione (GSH), glycine (Gly), lactate (Lac), macromolecules 

(MM), NH, phosphocholine (PC), phenylalanine (Phe), scylloinositol (Scy), taurine (Tau), 

valine (Val).

The majority of HR-MAS NMR studies reported in the literature relies on the cpmg type of 

spectra, as for they show resolved signals and flat baselines. Despite the predictable 

difficulties that are encountered implicit in the processing of water-presaturated zg and 

diffusion-edited led spectra, we believe that restricting limiting the statistical approach to 

cpmg data could limit the spectroscopic information that can be in principle gathered from 

tissues. We then tried Hence, we decided to try to derive metabolic and grading knowledge 

from the combined statistical analysis of the three types of spectra. To this aim In this 

perspective, zg, cpmg and led spectra were processed for each sample as described in the 

experimental section.

3.1 Exploratory analysis
A PCA model to explore the data was built prior to the classification step. Figure 3a shows 

a clear separation between grade III and IV samples, with some important exceptions. Three 

grade IV samples were found to be either extreme (04), extreme-borderline (28) or lying 

among the grade III samples (17). Two grade III samples also had interesting positions: 

sample 33-33_2 (replicates of the same specimen) was found in borderline position, while 

sample 22 was lying among the grade IV samples. This can be better seen in Figure 3b.

The separation evidenced by the dash-dotted red curve (a guide for the eye) in Figure 3 

correlates with neuroradiological characteristics of the two groups of tumors, in particular 

with the presence of necrosis and marked contrast enhancement in grade IV and with the 

absence of necrosis and the reduced contrast enhancement in grade III. Samples 17 and 

28 were classified by histological analysis as grade IV, but possess neuroradiological 

characteristics similar to those of grade III tumors, i.e. the absence of necrosis and the 

reduced contrast enhancement typical of grade III.

<Figure 3>

Figure 3. (a) PC1-2 score plot, also showing grade II, lymphoma and grade II and IV 

excluded samples; (b) zoom on the inter-class borderline zone, on samples 33 and 33_2. 

The dash-dotted red curve is a guide for the eye, see text.
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Grade II gliomas and lymphomas were projected on this PCA model and they are also shown 

in Figure 3a. Lymphoma samples seem to be most similar to grade IV samples, while grade 

II gliomas are more similar to grade III gliomas.

It is evident that sample 04 is extreme, also compared to the other grade IV samples. 

Inspecting the corresponding T2-contribution plot (Figure S1 reported in the Supplementary 

Materials), which shows the contribution of the original variables in determining the scores 

values of the samples, it emerges that its extreme position is mainly due to the significantly 

higher contributions from FAs. Sample 04 was obtained from a tumor lesion characterized 

by a cystic necrotic area, which could induce the high presence of FAs. Moreover, this 

sample, at the histological level, has features of atypical cells such as gemistocytic cells that 

define a different type of astrocytoma, that relapses and has a poor prognosis.

Based on this analysis, three grade IV samples (04, 17, 28) and one grade III sample (22) 

were not considered in the calibration set for the classification step. A summary of spectra 

considered in classification models is presented on Table 2. 

3.2 Classification analysis: SIMCA
Lymphomas and samples belonging to grade II were not considered in the classification 

modeling step, together with three samples of grade IV and one sample of grade III, as 

reported on Table 2. The total number of samples included for classification modelling was 

23 (32 spectra), with 7 (11 spectra) grade III and 16 (21 spectra) grade IV. Due to the rather 

reduced and class-unbalanced numbers of samples, it was decided to build a single-class 

SIMCA model, focusing on grade IV. Moreover, instead of dividing the dataset into a training 

and a test set, the double CV approach was employed. 

This allowed us to estimate sensitivity and specificity of the grade IV model in prediction 

using the classification assignments of the external loop. These results are reported in Table 

3 and Figure 4.

The model wrongly rejected only three grade IV samples out of 21 (03_1, 16, 19). It is 

important to clarify that samples 03_1 and 16 lie within the acceptance limit in Figure 4, 

because this figure refers to their estimation when they are present in the calibration set. 

However, the above two samples were rejected during the external cross-validation 

assessment, which is the information to be used when referring to predictive capability for 

grade IV samples.

The model wrongly accepted only one grade III sample (33) out of 11. It is interesting to 
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notice that sample 33 was found in PCA (Figure 3b) very close to grade IV samples, together 

with its replicate 33_2, which was correctly rejected by the SIMCA model, but can be found 

very close to the acceptance limit in Figure 4. Samples 33 and 33_2 derive from the same 

cancer tissue, and their difference is probably due to the heterogeneity of the tissues.

<Figure 4>

Figure 4. Reduced Orthogonal distance (Q/Qlim) vs. reduced Scores distance (T2/T2
lim) of 

the SIMCA model built for the grade IV gliomas. The red circle highlights the acceptance 

area, which is delimited by the reduced distance threshold, computed using the formula 

reported in the paragraph about SIMCA, under the Experimental Section. Symbols are 

reported in the legend; the symbols with lighter colors represent the twelve projected 

samples, i.e. 3 gliomas of grade II, 5 lymphomas, 1 glioma of grade III and 3 of grade IV, 

listed in the last column of Table 3, which were not considered in modeling, as reported in 

PCA analysis.

The grade II glioma and lymphoma samples listed in Table 3 were also predicted by the 

SIMCA model, and the prediction results are reported in Table 4. All the grade II samples 

were correctly rejected, but two lymphoma samples (23, 34) were wrongly accepted. 

A comparison of the metabolites’ relative content (peak areas obtained by MCR) of 

lymphoma samples 23 and 34 with respect to the correctly rejected ones reveals that the 

two rejected samples have significantly lower content of all metabolites. Moreover, sample 

05 was correctly rejected but it can be found close to the acceptance limit (Figure 4), and its 

profile resulted more similar to the two wrongly accepted samples (23, 34) than to the other 

two rejected ones (24, 31). Recently, a paper has been published about lymphoma tumor.38 

This paper focuses on the discrimination between malignant lymphomas and gliomas, and 

the authors report that it is usually difficult to preoperatively distinguish between the two. 

The use of MRS can be useful for preoperative diagnoses, and quantitative analysis is 

considered to be a valuable method for distinguishing between gliomas and malignant 

lymphomas. The limitation of the cited38 and of our study is the number of samples. 

As expected for their position in exploratory PCA model, the three glioma grade IV samples 

04, 17, 28 (“excluded” in Table 2) were wrongly rejected and the glioma grade III sample 22 

wrongly accepted. This last finding can be explained by the final diagnosis of 22 as 

xanthoastrocytoma.

3.3 Classification analysis: PLS-DA
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Only samples belonging to grades III and IV were considered in this classification modeling 

step. As opposed to the SIMCA classification, it is not possible to predict samples belonging 

to classes different from grade III and IV using the PLS-DA model, as explained in the 

Multivariate data analysis section about PLS-DA. As with the SIMCA classification, instead 

of dividing the dataset into a training and a test set, the double CV approach was used. The 

model performance results are reported in Table 4.

As expected, the samples’ distribution in the scores space of the PLS-DA model (Figure 5) 

resembles the one found in PCA (Figure 3), with a clear separation between the two classes. 

It is important to clarify the reason why the model wrongly predicted three samples, while 

Figure 5 shows a perfect separation between the two classes. As for the SIMCA model, the 

information obtained from the double CV is the one to be used when referring to the model’s 

predictive capability. Figure 5 refers instead to the model built using all the samples 

altogether, which generally performs better than the single models built in cross-validation.

It is interesting to inspect the position of the wrongly predicted samples. These samples 

result somehow extreme within their own class (Figure 5, labelled samples).

The PLS-DA model wrongly assigned sample 33_2 to grade IV, as opposed to the SIMCA 

model, which wrongly assigned sample 33 (a replicate of sample 33_2) to grade IV. These 

two replicates can be found close to each other in Figure 5, but also close to the grade IV 

samples. As already underlined, the difference found for these adjacent samples is probably 

due to the heterogeneity of the glioma sample. Furthermore, subject 33 was initially 

diagnosed with an oligodendroglioma that became an anaplastic tumor after a few years.

<Figure 5>

Figure 5. LV1-2 score plot showing grade III and grade IV samples. Labels are reported 

only for samples wrongly predicted using SIMCA (italics) or PLS-DA (red). Sample 19 is the 

only sample that was wrongly predicted by both methods.

3.4 Significant metabolites
In this section the SIMCA and PLS-DA sets of discriminant metabolites are compared. The 

shared metabolites are reported on Figure 6.

Twenty-eight discriminant signals were recovered by SIMCA, thirty-six were recovered by 

PLS-DA and twenty-one were found in common between the two classification methods. Six 

signals related to FAs were found, and the main source for them were the led NMR spectra. 

Maleschlijski and co-workers9 report that grade IV compared to grade III tumors have a 

higher content of FAs, and the same trend was found in our study, as it can be seen in 
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Figure 6. In the same study, Cr and Myo are reported to be less abundant in grade IV 

compared to grade III tumors: this trend was also found in our study and it can be seen in 

Figure 6 as well.9 Other metabolites such as NAA,39 Cyst and acetate (Ac) follow the same 

descending trend (Figure 6).

<Figure 6>

Figure 6. Boxplots of discriminant metabolites (the values reported correspond to the 

resolved peak areas), most in agreement between SIMCA and PLS-DA. The grade III and 

IV excluded from the classification, together with grade II and lymphoma samples, are 

plotted between each couple of box plots, for comparison.

These trends are also confirmed by Figure 7, where the discriminant metabolites important 

for grade IV (bars in blue) are mainly FAs, which are more abundant for this grade, while 

the other discriminant metabolites are important for grade III (bars in green) and are also 

more abundant for this grade. 

The role of FAs in the distinction between lymphomas and grade IV gliomas is still an open 

question. It has been suggested that their signals can be useful to distinguish between 

malignant lymphomas and gliomas, selecting regions without necrosis, for malignant 

lymphomas and glioblastomas have different mechanisms for the generation of FAs.38

In the case of gliomas, a higher FA peak is due to cystic or necrotic components,40 whereas, 

high lipids levels in malignant lymphomas seem to reflect the presence of activated or 

transformed lymphocytes and leukocytes that contain high levels of lipids.41 

 

<Figure 7>

Figure 7. Variables important in prediction (VIPs) for class IV (blue) and class III (green), 

only metabolites exceeding the VIP threshold (=1) are labelled. 

Most of the metabolites significant for the classification have already been reported, 

discussed and reviewed in the literature,42 when dealing with ex vivo spectroscopic results: 

the enhancement of signals from lipids (FA and Glyctg, in this study) and the decrease of Cr, 

NAA and Myo. This study sheds light on the importance of another metabolite,: that is 

cystathionine (Cyst). While Cyst presence in the Its presence in human brain is known,43 

nevertheless its detection by HR-MAS NMR in human brain tumors has not been reported 

so far. We think that t This could be due:

1. to the wide use in NMR metabolomics of 1H cpmg spectra alone, where signals from 
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Cyst [HMDB00099] are less intense than in zg spectra;

2. to the position of some of its signals, that are close to those of ethanolamine (at 3.13 

ppm [HMDB00149]) and hypotaurine (HTau, at 2.66 ppm [HMDB00965]) and, if 2D 

experiments are not used to check them, these signals can be attributed to these two 

metabolites.

For this reason, we report in Figure 8 and 9 the fingerprints of Cyst and in Table S1 its 

chemical shifts (together with those of some selected metabolites). In details, the methylene 

protons of Cyst at 3.12 ppm correlate with a carbon at about 35 ppm, and not at 44 ppm as 

in ethanolamine, and the methylene protons of Cyst at 2.73 ppm correlate with a carbon at 

30 ppm, and not at 58 ppm, as in the case of HTau. In some samples, both HTau and Cyst 

can be found and distinguished. In our samples instead, ethanolamine was present in small 

amounts and Cyst signals usually dominated 1H spectra in the region around 3.1 ppm, as 

can be seen from Figure 8. The T2 filter acts more on Cyst than on HTau, the signals of 

which become more evident in the cpmg spectrum.

<Figure 8>

Figure 8. 1H NMR water-presaturated spectra of a GIII sample obtained with a zg sequence 

(a) and a cpmg sequence (b). Signals from Cyst are marked by red squares. Signals from 

HTau are marked by blue squares. Those in broken line are highly overlapped to other 

signals. 

<Figure 9>

Figure 9. 2D NMR COSY (a) and HSQC (b) spectra of a GIII sample with Cyst correlations 

marked.

Only one recently published study has reported the first measurement of Cyst by in vivo 

MRS.44 The identification of Cyst was confirmed comparing in vivo spectra acquired gliomas 

(with IDH mutations) with the Cyst spectrum measured in a phantom. With In the present 

study we support these findings and the direct assignment of Cyst in vivo MRS. 

Finally, we want to stress the importance of verifying 1D 1H NMR assignments through 

selected 2D experiments, when possible. A signal (triplet) around 2.25 ppm can be attributed 

both to 2-aminoadipate and to 2-hydroxyglutarate (2OHG)10 and the assignment can be 

done on the basis of TOCSY spectra (see Figure S2 and Table S1). TOCSY correlations 

are very helpful in this respect and allowed us to assign it to 2-aminoadipate in seven 

samples and to 2OHG only in one. 
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Cyst and 2OHG are considered important metabolites in cancer pathologies. Their role is 

related to IDH mutations. IDH mutations can be found in gliomas and are characterized by 

a specific cellular metabolism, causing the accumulation of 2OHG in tumor cells.45,46

Higher expression of cystathionine-β-synthase (CBS), the first enzyme of the 

transsulfuration pathway, has been associated with better prognosis in In IDH-mutated 

1p/19q codeleted gliomas.47 

Cyst derives from the condensation of homocysteine with serine catalyzed by CBS, and it 

which is the initial and rate-limiting step in the transsulfuration pathway. Cyst is subsequently 

cleaved by the enzyme cystathionine gamma-lyase (CTH) to form cysteine, a precursor of 

GSH. Moreover, CBS participates in the desulfuration reactions that contribute to 

endogenous hydrogen sulfide production. Deregulation of CBS and the associated 

alterations in homocysteine and/or hydrogen sulfide levels leads to a wide range of 

pathological disturbances, and CBS activity also plays an important but complex role in 

cancer biology.48

Reduced serine biosynthesis may lead to increased reliance on the CBS/CTH pathway as 

a critical response to increased oxidative stress.47,49 In particular, high CBS expression has 

been shown to confer better prognosis in IDH-mutated 1p/19q codeleted gliomas47 in line 

with a previous study showing that decreased expression of CBS promotes glioma 

tumorigenesis in tumor xenografts.50 Correlation between higher CBS expression and 

survival in IDH-mutated 1p/19q codeleted gliomas has been confirmed also from the POLA 

public dataset.44 Fack et al have reported decreased Cyst in IDH mutant tumour xenografts 

compared with wild type, yet in the few samples reported in this last study, Cyst levels were 

roughly inversely correlated with codeletion status.47

4 CONCLUSIONS
This study highlights metabolic differences between anaplastic astrocytomas (grade III 

gliomas) and glioblastomas (grade IV gliomas), as identified at the time of the first diagnosis. 

The application of MCR allowed to efficiently extract important and meaningful metabolic 

details from the brain tumour samples obtained using HR-MAS NMR. This approach is 

particularly important crucial on tissues, since slight changes in the chemical shifts of the 

signals of the same metabolites are commonly observed in the different specimens, and 

they cannot be controlled using buffers, as usually done in NMR on fluid samples.

The three one-dimensional spectra datasets under examination (zg, cpmg and led) were 

analysed and modeled altogether, within the framework of data fusion.
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Two classification models of different nature (SIMCA, class-modelling vs PLS-DA, 

discriminant analysis) were built, leading in both cases to good classification rates as 

reported in Tables 3 and 4. Moreover, the two approaches provided valuable information 

about the metabolites important on metabolites that can be utilized for the distinction 

between grade III and grade IV gliomas. Among these metabolites, Cyst surely is the most 

interesting result. Cyst and other related amino acids such as 2OHG identified in this study 

are relatively new in the MRS and HR-MAS NMR panorama and they seem to be good 

candidates as markers to monitor brain cancer prognosis and treatments.

Once again, we would like to underline that the use of 2D NMR spectra is mandatory 

essential for the correct assignment of metabolites with similar chemical shifts and signal 

shapes. 
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Figure Legends

Figure 1. Extraction of chemical features from NMR spectra through interval-based MCR 

modeling.

Figure 2. 1H NMR spectra of a grade IV sample obtained with a zg sequence (a), a cpmg 

sequence (b) and a led sequence (c). The first one displays both narrow and broad signals, 

the second one retains the narrow signals from fast tumbling molecules, whereas the third 

one only the broad resonances from slowly tumbling species. Major metabolites are labelled: 

alanine (Ala), 2-aminoadipic acid (2-aa), adenine, adenosine, ascorbate (Asc), choline 

containing compound (ChoCC), creatine (Cr), glutamine (Gln), glutamate (Glu), 

glutamine+glutamate (Glx), glutathione (GSH), glycine (Gly), lactate (Lac), macromolecules 

(MM), NH, phosphocholine (PC), phenylalanine (Phe), scylloinositol (Scy), taurine (Tau), 

valine (Val).

Figure 3. (a) PC1-2 score plot, also showing grade II, lymphoma and grade II and IV 

excluded samples; (b) zoom on the inter-class borderline zone, on samples 33 and 33_2. 

The dash-dotted red curve is a guide for the eye, see text.

Figure 4. Reduced Orthogonal distance (Q/Qlim) vs. reduced Scores distance (T2/T2
lim) of 

the SIMCA model built for the grade IV gliomas. The red circle highlights the acceptance 

area, which is delimited by the reduced distance threshold, computed using the formula 

reported in the paragraph about SIMCA, under the Experimental Section. Symbols are 

reported in the legend; the symbols with lighter colors represent the twelve projected 

samples i.e. 3 gliomas of grade II, 5 lymphomas, 1 glioma of grade III and 3 of grade IV, 

listed in the last column of Table 3, which were not considered in modeling, as reported in 

PCA analysis.

Figure 5. LV1-2 score plot showing grade III and grade IV samples. Labels are reported 

only for samples wrongly predicted using SIMCA (italics) or PLS-DA (red). Sample 19 is the 

only sample that was wrongly predicted by both methods.

Figure 6. Boxplots of discriminant metabolites (the values reported correspond to the 

resolved peak areas), most in agreement between SIMCA and PLS-DA. The grade III and 

IV excluded from the classification, together with grade II and lymphoma samples, are 

plotted between each couple of box plots, for comparison.

Figure 7. Variables important in prediction (VIPs) for class IV (blue) and class III (green), 

only metabolites exceeding the VIP threshold (=1) are labelled. 

Figure 8. 1H NMR water-presaturated spectra of a GIII sample obtained with a zg sequence 
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(a) and a cpmg sequence (b). Signals from Cyst are marked by red squares. Signals from 

HTau are marked by blue squares. Those in broken line are highly overlapped to other 

signals. 

Figure 9. 2D NMR COSY (a) and HSQC (b) spectra of a GIII sample with Cyst correlations 

marked.
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Table 1. Tissue samples and patient population

Diagnose Number of 
patients
(tissues samples)

Weight (mg) Age

Glioma grade IV 19 (24) 9.7÷70.7 45-75

Glioma grade III 8 (12) 7.9÷47.3 42-61

Glioma grade II 3 (3) 7.6÷19.8 42-47

Lymphoma 5 (5) 4.2÷25.8 35-78

Table 2. Spectra used for classification analysis

Diagnose total 
number
(44)

in SIMCA 
calibration 
set 
(21)

in PLS-DA 
calibration 
set 
(32)

excluded 
(12)

excluded 
samples' 
labels 

Glioma grade IV 24 21 21 3 04, 17, 28

Glioma grade III 12 0 11 1 22

Glioma grade II 3 0 0 3

Lymphoma 5 0 0 5

Table 3. SIMCA classification results in prediction

Diagnose Sensitivitya Specificityb
labels of wrongly 
predicted samples

Glioma grade IV 18/21 (86%) 03_1, 16, 19

Glioma grade III 10/11 (91%) 33

Glioma grade II 3/3

Lymphoma 3/5 23, 34
a number of correctly accepted / total number of samples belonging to the class (in 

parentheses as percentage)
b number of correctly rejected / total number of samples of the given class (in parentheses 

as percentage)
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Table 4. PLS-DA classification results in prediction

Diagnose non-error ratea
labels of wrongly 
predicted samples

Glioma grade IV 18/21 (86%) 19 (IV)

Glioma grade III 8/11 (73%) 33_2, 21 (III)
a number of correctly accepted / total number of samples belonging to the class (in 

parentheses as percentage)
b the Roman numbers in brackets are referred to the glioma grade to which the sample 

belongs to
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Table S1. NMR data (400 MHz) for selected metabolites

Figure S1. T2-contribution plot of sample 04

Figure S2. TOCSY spectra of a) a glioma grade III sample and of a b) GBM sample
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Table S1. NMR data (400 MHz) for selected metabolites.

Metabolite nuclei H (δ, ppm) C (δ,ppm)

Cyst 1-CH 3.97 56.1

2-CH2 3.15 (dd) 
3.08 (dd) 

34.6

3-CH2 2.73 (t) 29.5

4-CH2 2.18 32.7

5-CH 3.87 56.5

HTau 1-CH2 2.65 (t) 58.3

2-CH2 3.35 (t) 36.3

2-aminoadipate 1-CH 3.75 57.2

2-CH2 1.85 33.1

3-CH2 1.65 24.4

4-CH2 2.25 (t) 39.7

2OHG 1-CH 4.02

2-CH2 1.98
1.84

3-CH2 2.25 (t)
a 1H and 13C chemical shifts are referenced to Ala methyl signal at 1.48 and 19.0 ppm, 
respectively. 
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Figure S1. T2-contribution plot of sample 04.

Figure S2. TOCSY spectra of a) a glioma grade III sample and of a b) GBM sample 
evidencing the spectral differences between 2-aminoadipate and 2OHG. 
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A metabolomic data fusion approach to support gliomas grading
Valeria Righi, Nicola Cavallini, Antonella Valentini, Giampietro Pinna, Giacomo Pavesi, 

Maria Cecilia Rossi, Annette Puzzolante, Adele Mucci, Marina Cocchi

High-Resolution Magic-Angle-Spinning NMR metabolomics studies can help in the 

discrimination of gliomas. We propose to evaluate not only T2-filtered spectra but also 

diffusion-filtered and water-presaturated spectra fusing the data gathered by these 

different NMR experiments and applying a chemometric approach based on 

Multivariate Curve Resolution. Biomarkers important for glioma’s discrimination were 

found, in particular, cystathionine seems a biomarker for a better prognosis of glioma 

tumors.
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Figure 1. Extraction of chemical features from NMR spectra through interval-based MCR modeling. 
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Figure 3. (a) PC1-2 score plot, also showing grade II, lymphoma and grade II and IV excluded samples; (b) 
zoom on the inter-class borderline zone, on samples 33 and 33_2. The dash-dotted red curve is a guide for 

the eye, see text. 
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Figure 4. Reduced Orthogonal distance (Q/Qlim) vs. reduced Scores distance (T2/T2lim) of the SIMCA model 
built for the grade IV gliomas. The red circle highlights the acceptance area. Symbols are reported in the 

legend; the symbols with lighter colors represent the twelve projected samples, i.e. 3 glioma of grade II, 5 
lymphoma, and the glioma grade III (1) and grade IV (3) listed in the last column of Table 3, which were 

not considered in modeling, as reported in PCA analysis. 
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Figure 5. LV1-2 score plot showing grade III and grade IV samples. Labels are reported only for samples 
wrongly predicted using SIMCA (italics) or PLS-DA (red). Sample 19 is the only sample that was wrongly 

predicted by both methods. 
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Figure 6. Boxplots of discriminant metabolites (the values reported correspond to the resolved peak areas), 
most in agreement between SIMCA and PLS-DA. The grade III and IV excluded from the classification, 

together with grade II and lymphoma samples, are plotted between each couple of box plots, for 
comparison. 
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Figure 7. Variables important in prediction (VIPs) for class IV (blue) and class III (green), only metabolites 
exceeding the VIP threshold (=1) are labelled. 
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Figure 8. 1H NMR water-presaturated spectra of a GIII sample obtained with a zg sequence (a) and a cpmg 
sequence (b). Signals from Cyst are marked by red squares. Signals from HTau in blue. Those in broken line 

are highly overlapped to other signals. 
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Figure 9. 2D NMR COSY (a) and HSQC (b) spectra of a GIII sample with Cyst correlations marked. 
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