600 research outputs found

    Efficacy of new herbicide (bispyribac sodium 10% SC) against different weed flora, nutrient uptake in rice and their residual effects on succeeding crop of green gram under zero tillage

    Get PDF
    Field experiment was conducted in the wetland farms of Tamil Nadu Agricultural University, Coimbatore during rabi season (August to February) of 2011-12 to evaluate the herbicide (Bispyribac sodium 10% SC) on weed control and their nutrient management in direct seeded lowland rice. The experiment was laid out in a Randomized Block Design (RBD) with three replications. The results revealed that Early Post Emergence (EPOE) application of bispyribac sodium 10% SC 40 g ha-1 recorded higher weed control efficiency and lesser weed density, nutrient uptake at reproductive stage of the crop. Different weed management practices imposed on rice crop did not affect the germination of succeeding green gram

    Genotypic capacity of post-anthesis stem reserve mobilization in wheat for yield sustainability under drought and heat stress in the subtropical region

    Get PDF
    Wheat productivity is severely affected by drought and heat stress conditions worldwide. Currently, stem reserve mobilization (SRM) is receiving increased attention as a trait that can sustain wheat yields under adverse environments. However, the significance of SRM in sustaining wheat yields under drought and heat stress conditions remains uncertain in the tropical climate of Indo-Gangetic Plain region. Therefore, this study aimed to investigate genotypic variations in SRM in wheat and their influence on yield sustainability under drought and heat stress environments. The experiment was designed in an alpha-lattice layout, accommodating 43 genotypes under four simulated environments [timely sown and well irrigated (non-stress); timely sown and water-deficit/drought stress; late-sown and well-irrigated crop facing terminally high temperature; and late-sown and water-deficit stress (both water-deficit and heat stress)]. The water-deficit stress significantly increased SRM (16%–68%, p < 0.01) compared to the non-stress environment, while the heat stress conditions reduced SRM (12%–18%). Both SRM and stem reserve mobilization efficiency exhibited positive correlations with grain weight (grain weight spike−1) under all three different stress treatments (p < 0.05). Strong positive correlations between stem weight (at 12 days after anthesis) and grain weight were observed across the environments (p < 0.001); however, a significant positive correlation between stem weight and SRM was observed only with stress treatments. Results revealed that the SRM trait could effectively alleviate the impacts of water-deficit stress on yields. However, the SRM-mediated yield protection was uncertain under heat stress and combined water-deficit and heat stress treatments, possibly due to sink inefficiencies caused by high temperature during the reproductive period. Defoliated plants exhibited higher SRM than non-defoliated plants, with the highest increment observed in the non-stress treatment compared to all the stress treatments. Results revealed that wider genetic variability exists for the SRM trait, which could be used to improve wheat yield under drought stress conditions

    Nitrogen dose dependent changes in leaf greenness, crop phenology, grain nitrogen content and yield in rice (Oryza sativa L.) sub-species

    Get PDF
    In the present study, 30 diverse genotypes of rice sub-species were evaluated for variations in phenology, grain protein content, grain morphology and yield under field conditions with different nitrogen (N) regimes i.e., N deficient (N=0) and N sufficient (N=120 kg ha-1). N deficiency decreased the leaf greenness, panicle yield, grain protein content, altered grain morphology and grain-related parameters. Significant variations in grain morphology-related parameters such as grain length and grain width among rice genotypes were observed for different N treatments. Changes in grain morphology related parameters were correlated with yield. The study identified Sahbhagi Dhan, BAM-759, BVD-109, Pusa Sugandh-5, and Kalinga-1 that maintained higher vegetative greenness, while Sahbhagi Dhan, Vandana, Nerica-L-44, Kalinga-1 and APO that showed higher panicle yield under N0 condition. Rice genotypes APO, Nerica-L-42 and Kalinga-1 performed well under N0 with a lesser impact on crop phenology and grain morphology. Grain protein content was found higher in BAM-759, Anjali, Thurur Bhog, IR-64, Rasi, and Kalinga-1under both the treatments. Flag leaf Soil Plant Analysis Development (SPAD) and Normalized Difference Vegetation Index (NDVI) measurements were significantly correlated with grain yield, and grain protein content. The trait specific donors suitable for low N conditions identified in the study will pave the way forward to the research in understanding underlying mechanisms and in crop improvement programs

    A putative heat-responsive transcription factor (TaHD97) and its targets in wheat (Triticum aestivum) providing thermotolerance

    Get PDF
    214-223Transcription factors (TFs) are protein, which perform their role at transcriptional level by affecting the expression of various genes associated with metabolic pathways, growth and stress-associated genes (SAGs) at different developmental stages. Here, we identified 38 novel heat-responsive transcription factor genes from wheat cv. HD2985 by mining the de novo transcriptome data derived from heat shock (HS) treated wheat. Based on digital gene expression (DGE), a putative transcript (TaHD97) of ~1.1 kbas amplified and cloned from wheat cv. HD2985. The presence of heat stress transcription factor (HSF) DNA binding domain was observed in the amino acid sequence. Differential expression of TaHD97 was observed in HD2985 (thermotolerant) and HD2329 (thermosensitive) under heat stress. Tissue specific expression analysis showed up-regulation of TaHD97 in leaves, stem and endospermic tissues and down-regulation in root under HS. A positive correlation was established between the expression of TaHD97 and its target gene (HSP17 and HSP90) in wheat under heat stress. HSP17 transcripts were observed more in leaves of HD2985, as compared to HD2329. Thermotolerance related biochemical enzymes (SOD, CAT, GPX and TBARS) were observed higher in wheat cv. HD2985 showing maximum expression of TaHD97 under heat stress. There is a need for the functional validation of the gene TaHD97 in order to use it for the regulation of sHSP (catalytic chaperone) - a novel approach towards augmenting thermotolerance in wheat under heat stress

    Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels

    Get PDF
    Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants

    Trichostatin A Selectively Suppresses the Cold-Induced Transcription of the ZmDREB1 Gene in Maize

    Get PDF
    Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective

    Natural Variation in Arabidopsis thaliana Revealed a Genetic Network Controlling Germination Under Salt Stress

    Get PDF
    Plant responses to environmental stresses are polygenic and complex traits. In this study quantitative genetics using natural variation in Arabidopsis thaliana was used to investigate the genetic architecture of plant responses to salt stress. Eighty seven A. thaliana accessions were screened and showed a large variation for root development and seed germination under 125 and 200 mM NaCl, respectively. Twenty two quantitative trait loci for these traits have been detected by phenotyping two recombinants inbred line populations, Sha x Col and Sha x Ler. Four QTLs controlling germination under salt were detected in the Sha x Col population. Interestingly, only one allelic combination at these four QTLs inhibits germination under salt stress, implying strong epistatic interactions between them. In this interacting context, we confirmed the effect of one QTL by phenotyping selected heterozygous inbred families. We also showed that this QTL is involved in the control of germination under other stress conditions such as KCl, mannitol, cold, glucose and ABA. Our data highlights the presence of a genetic network which consists of four interacting QTLs and controls germination under limiting environmental conditions

    Remediation of salt-affected soil by the addition of organic matter: an investigation into improving glutinous rice productivity

    Get PDF
    Soil salinity may limit plant growth and development, and cause yield loss in crop species. This study aimed at remediating saline soil using organic matter (OM) treatment, before the cultivation of RD6 rice (Oryza sativa L. spp. indica). Physiological and morphological characters of rice plants, as well as crop yield, were evaluated from salt-affected soil with varying levels of salinity. The chlorophyll a and total chlorophyll pigments of rice plants grown in salt-affected soil (2% salt level) with the application of OM were maintained better than in plants grown without OM treatment. The degree of reduced photosynthetic pigments in rice plants was dependent on the level of salt contamination. Pigment content was positively related to maximum quantum yield of PSII (Fv/Fm) and quantum efficiency of PSII (ΦPSII), leading to reduced net photosynthetic rate (Pn) and reduced total grain weight (TGW). Photosynthetic abilities, including chlorophyll a and total chlorophyll pigments and ΦPSII, in rice plants grown with OM treatment were greater than in those cultivated in soil without the OM treatment, especially in high salt levels (1-2% salt). The remediation of salt-affected soil in paddy fields using OM should be applied further, as an effective way of enhancing food crop productivity

    Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures

    Get PDF
    In plants, the C-repeat binding factors (Cbfs) are believed to regulate low-temperature (LT) tolerance. However, most functional studies of Cbfs have focused on characterizing expression after an LT shock and have not quantified differences associated with variable temperature induction or the rate of response to LT treatment. In the Triticeae, rye (Secale cereale L.) is one of the most LT-tolerant species, and is an excellent model to study and compare Cbf LT induction and expression profiles. Here, we report the isolation of rye Cbf genes (ScCbfs) and compare their expression levels in spring- and winter-habit rye cultivars and their orthologs in two winter-habit wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Eleven ScCbfs were isolated spanning all four major phylogenetic groups. Nine of the ScCbfs mapped to 5RL and one to chromosome 2R. Cbf expression levels were variable, with stronger expression in winter- versus spring-habit rye cultivars but no clear relationship with cultivar differences in LT, down-stream cold-regulated gene expression and Cbf expression were detected. Some Cbfs were expressed only at warmer acclimation temperatures in all three species and their expression was repressed at the end of an 8-h dark period at warmer temperatures, which may reflect a temperature-dependent, light-regulated diurnal response. Our work indicates that Cbf expression is regulated by complex genotype by time by induction–temperature interactions, emphasizing that sample timing, induction–temperature and light-related factors must receive greater consideration in future studies involving functional characterization of LT-induced genes in cereals

    Transgenerational Effects of Stress Exposure on Offspring Phenotypes in Apomictic Dandelion

    Get PDF
    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects
    corecore