8,613 research outputs found
4He experiments can serve as a database for determining the three-nucleon force
We report on microscopic calculations for the 4He compound system in the
framework of the resonating group model employing realistic nucleon-nucleon and
three nucleon forces. The resulting scattering phase shifts are compared to
those of a comprehensive R-matrix analysis of all data in this system, which
are available in numerical form. The agreement between calculation and analysis
is in most cases very good. Adding three-nucleon forces yields in many cases
large effects. For a few cases the new agreement is striking. We relate some
differencies between calculation and analysis to specific data and discuss
neccessary experiments to clarify the situation. From the results we conclude
that the data of the 4He system might be well suited to determine the structure
of the three-nucleon force.Comment: title changed,note added, format of figures changed, appearance of
figures in black-and-white changed, Phys. Rev. C accepte
Spin orbit coupling at the level of a single electron
We utilize electron counting techniques to distinguish a spin conserving fast
tunneling process and a slower process involving spin flips in
AlGaAs/GaAs-based double quantum dots. By studying the dependence of the rates
on the interdot tunnel coupling of the two dots, we find that as many as 4% of
the tunneling events occur with a spin flip related to spin-orbit coupling in
GaAs. Our measurement has a fidelity of 99 % in terms of resolving whether a
tunneling event occurred with a spin flip or not
Two-Hole Bound States from a Systematic Low-Energy Effective Field Theory for Magnons and Holes in an Antiferromagnet
Identifying the correct low-energy effective theory for magnons and holes in
an antiferromagnet has remained an open problem for a long time. In analogy to
the effective theory for pions and nucleons in QCD, based on a symmetry
analysis of Hubbard and t-J-type models, we construct a systematic low-energy
effective field theory for magnons and holes located inside pockets centered at
lattice momenta (\pm pi/2a,\pm pi/2a). The effective theory is based on a
nonlinear realization of the spontaneously broken spin symmetry and makes
model-independent universal predictions for the entire class of lightly doped
antiferromagnetic precursors of high-temperature superconductors. The
predictions of the effective theory are exact, order by order in a systematic
low-energy expansion. We derive the one-magnon exchange potentials between two
holes in an otherwise undoped system. Remarkably, in some cases the
corresponding two-hole Schr\"odinger equations can even be solved analytically.
The resulting bound states have d-wave characteristics. The ground state wave
function of two holes residing in different hole pockets has a d_{x^2-y^2}-like
symmetry, while for two holes in the same pocket the symmetry resembles d_{xy}.Comment: 35 pages, 11 figure
Nuclear fission: The "onset of dissipation" from a microscopic point of view
Semi-analytical expressions are suggested for the temperature dependence of
those combinations of transport coefficients which govern the fission process.
This is based on experience with numerical calculations within the linear
response approach and the locally harmonic approximation. A reduced version of
the latter is seen to comply with Kramers' simplified picture of fission. It is
argued that for variable inertia his formula has to be generalized, as already
required by the need that for overdamped motion the inertia must not appear at
all. This situation may already occur above T=2 MeV, where the rate is
determined by the Smoluchowski equation. Consequently, comparison with
experimental results do not give information on the effective damping rate, as
often claimed, but on a special combination of local stiffnesses and the
friction coefficient calculated at the barrier.Comment: 31 pages, LaTex, 9 postscript figures; final, more concise version,
accepted for publication in PRC, with new arguments about the T-dependence of
the inertia; e-mail: [email protected]
Cavity-enhanced optical Hall effect in two-dimensional free charge carrier gases detected at terahertz frequencies
The effect of a tunable, externally coupled Fabry-P\'{e}rot cavity to
resonantly enhance the optical Hall effect signatures at terahertz frequencies
produced by a traditional Drude-like two-dimensional electron gas is shown and
discussed in this communication. As a result, the detection of optical Hall
effect signatures at conveniently obtainable magnetic fields, for example by
neodymium permanent magnets, is demonstrated. An AlInN/GaN-based high electron
mobility transistor structure grown on a sapphire substrate is used for the
experiment. The optical Hall effect signatures and their dispersions, which are
governed by the frequency and the reflectance minima and maxima of the
externally coupled Fabry-P\'{e}rot cavity, are presented and discussed. Tuning
the externally coupled Fabry-P\'{e}rot cavity strongly modifies the optical
Hall effect signatures, which provides a new degree of freedom for optical Hall
effect experiments in addition to frequency, angle of incidence and magnetic
field direction and strength
Electron effective mass in AlGaN alloys determined by mid-infrared optical Hall effect
The effective electron mass parameter in Si-doped AlGaN is
determined to be from mid-infrared optical Hall
effect measurements. No significant anisotropy of the effective electron mass
parameter is found supporting theoretical predictions. Assuming a linear change
of the effective electron mass with the Al content in AlGaN alloys and
for GaN, an average effective electron mass of
can be extrapolated for AlN. The analysis of mid-infrared
spectroscopic ellipsometry measurements further confirms the two phonon mode
behavior of the E(TO) and one phonon mode behavior of the A(LO) phonon
mode in high-Al-content AlGaN alloys as seen in previous Raman scattering
studies
Strong spin-orbit splitting on Bi surfaces
Using first-principles calculations and angle-resolved photoemission, we show
that the spin-orbit interaction leads to a strong splitting of the surface
state bands on low-index surfaces of Bi. The dispersion of the states and the
corresponding Fermi surfaces are profoundly modified in the whole surface
Brillouin zone. We discuss the implications of these findings with respect to a
proposed surface charge density wave on Bi(111) as well as to the surface
screening, surface spin-density waves, electron (hole) dynamics in surface
states, and to possible applications to the spintronics.Comment: 4 pages 2 figure
Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment
Using angle-resolved photoelectron spectroscopy and ab-initio GW
calculations, we unambiguously show that the widely investigated
three-dimensional topological insulator Bi2Se3 has a direct band gap at the
Gamma point. Experimentally, this is shown by a three-dimensional band mapping
in large fractions of the Brillouin zone. Theoretically, we demonstrate that
the valence band maximum is located at the Brillouin center only if many-body
effects are included in the calculation. Otherwise, it is found in a
high-symmetry mirror plane away from the zone center.Comment: 8 pages, 4 figure
Memory effects on descent from nuclear fission barrier
Non-Markovian transport equations for nuclear large amplitude motion are
derived from the collisional kinetic equation. The memory effects are caused by
the Fermi surface distortions and depend on the relaxation time. It is shown
that the nuclear collective motion and the nuclear fission are influenced
strongly by the memory effects at the relaxation time . In particular, the descent of the nucleus from the fission
barrier is accompanied by characteristic shape oscillations. The eigenfrequency
and the damping of the shape oscillations depend on the contribution of the
memory integral in the equations of motion. The shape oscillations disappear at
the short relaxation time regime at , which corresponds to the
usual Markovian motion in the presence of friction forces. We show that the
elastic forces produced by the memory integral lead to a significant delay for
the descent of the nucleus from the barrier. Numerical calculations for the
nucleus U shows that due to the memory effect the saddle-to-scission
time grows by a factor of about 3 with respect to the corresponding
saddle-to-scission time obtained in liquid drop model calculations with
friction forces.Comment: 22 pages, 8 figures, submitted to Phys. Rev.
Superallowed 0+ to 0+ nuclear beta decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model
A new critical survey is presented of all half-life, decay-energy and
branching-ratio measurements related to 20 0+ to 0+ beta decays. Compared with
our last review, there are numerous improvements: First, we have added 27
recently published measurements and eliminated 9 references; of particular
importance, the new data include a number of high-precision Penning-trap
measurements of decay energies. Second, we have used the recently improved
isospin symmetry-breaking corrections. Third, our calculation of the
statistical rate function now accounts for possible excitation in the daughter
atom. Finally, we have re-examined the systematic uncertainty associated with
the isospin symmetry-breaking corrections by evaluating the radial-overlap
correction using Hartree-Fock radial wave functions and comparing the results
with our earlier calculations, which used Saxon-Woods wave functions; the
provision for systematic uncertainty has been changed as a consequence. The new
corrected Ft values are impressively constant and their average, when combined
with the muon liftime, yields the up-down quark-mixing element of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, V_{ud} = 0.97425(22). The unitarity
test on the top row of the matrix becomes |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2
= 0.99995(61). Both V_{ud} and the unitarity sum have significantly reduced
uncertainties compared with our previous survey, although the new value of
V_{ud} is statistically consistent with the old one. From these data we also
set limits on the possible existence of scalar interactions, right-hand
currents and extra Z bosons. Finally, we discuss the priorities for future
theoretical and experimental work with the goal of making the CKM unitarity
test even more definitive.Comment: 36 pages, 11 tables, 9 figure
- …