549 research outputs found
Viscoelastic response of contractile filament bundles
The actin cytoskeleton of adherent tissue cells often condenses into filament
bundles contracted by myosin motors, so-called stress fibers, which play a
crucial role in the mechanical interaction of cells with their environment.
Stress fibers are usually attached to their environment at the endpoints, but
possibly also along their whole length. We introduce a theoretical model for
such contractile filament bundles which combines passive viscoelasticity with
active contractility. The model equations are solved analytically for two
different types of boundary conditions. A free boundary corresponds to stress
fiber contraction dynamics after laser surgery and results in good agreement
with experimental data. Imposing cyclic varying boundary forces allows us to
calculate the complex modulus of a single stress fiber.Comment: Revtex with 24 pages, 7 Postscript figures included, accepted for
publication in Phys. Rev.
Phase transitions for -adic Potts model on the Cayley tree of order three
In the present paper, we study a phase transition problem for the -state
-adic Potts model over the Cayley tree of order three. We consider a more
general notion of -adic Gibbs measure which depends on parameter
\rho\in\bq_p. Such a measure is called {\it generalized -adic quasi Gibbs
measure}. When equals to -adic exponent, then it coincides with the
-adic Gibbs measure. When , then it coincides with -adic quasi
Gibbs measure. Therefore, we investigate two regimes with respect to the value
of . Namely, in the first regime, one takes for some
J\in\bq_p, in the second one . In each regime, we first find
conditions for the existence of generalized -adic quasi Gibbs measures.
Furthermore, in the first regime, we establish the existence of the phase
transition under some conditions. In the second regime, when we prove the existence of a quasi phase transition. It turns out that
if and \sqrt{-3}\in\bq_p, then one finds the existence
of the strong phase transition.Comment: 27 page
Electrically controlled long-distance spin transport through an antiferromagnetic insulator
Spintronics uses spins, the intrinsic angular momentum of electrons, as an
alternative for the electron charge. Its long-term goal is in the development
of beyond-Moore low dissipation technology devices. Recent progress
demonstrated the long-distance transport of spin signals across ferromagnetic
insulators. Antiferromagnetically ordered materials are however the most common
class of magnetic materials with several crucial advantages over ferromagnetic
systems. In contrast to the latter, antiferromagnets exhibit no net magnetic
moment, which renders them stable and impervious to external fields. In
addition, they can be operated at THz frequencies. While fundamentally their
properties bode well for spin transport, previous indirect observations
indicate that spin transmission through antiferromagnets is limited to short
distances of a few nanometers. Here we demonstrate the long-distance, over tens
of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3),
the most common antiferromagnetic iron oxide, exploiting the spin Hall effect
for spin injection. We control the spin current flow by the interfacial
spin-bias and by tuning the antiferromagnetic resonance frequency with an
external magnetic field. This simple antiferromagnetic insulator is shown to
convey spin information parallel to the compensated moment (N\'eel order) over
distances exceeding tens of micrometers. This newly-discovered mechanism
transports spin as efficiently as the net magnetic moments in the best-suited
complex ferromagnets. Our results pave the way to ultra-fast, low-power
antiferromagnet-insulator-based spin-logic devices that operate at room
temperature and in the absence of magnetic fields
Multiple sources of Escherichia coli O157
Abstract Samples from cattle, other domestic and wild animals, flies, feeds, and water-troughs were collected from 12 cattle farms and tested for Escherichia coli O157. E. coli O157 was isolated from bovine fecal samples on all 12 farms with a within herd prevalence ranging from 1.1% to Ž . Ž . 6.1%. E. coli O157 was also found in 1 of 90 1.1% equine fecal samples, 2 of 65 3.1% canine Ž . Ž . fecal samples, 1 of 200 pooled bird samples 0.5% , 2 of 60 pooled fly samples 3.3% , and 10 of Ž . Ž . 320 3.1% water-trough sample sets biofilm and water . No E. coli O157 were isolated from 300 rodents, 33 cats, 34 assorted wildlife, or 335 cattle feed samples. Indistinguishable pulsed-field gel electrophoresis patterns of XbaI digested chromosomal DNA and Shiga toxin types were observed for bovine and water-trough isolates from two farms and for one equine and two bovine isolates from one farm. q 1998 Elsevier Science B.V
CAR-T cell. the long and winding road to solid tumors
Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles
Homogeneity and persistence of transgene expression by omitting antibiotic selection in cell line isolation
Nonuniform, mosaic expression patterns of transgenes are often linked to transcriptional silencing, triggered by epigenetic modifications of the exogenous DNA. Such phenotypes are common phenomena in genetically engineered cells and organisms. They are widely attributed to features of transgenic transcription units distinct from endogenous genes, rendering them particularly susceptible to epigenetic downregulation. Contrary to this assumption we show that the method used for the isolation of stably transfected cells has the most profound impact on transgene expression patterns. Standard antibiotic selection was directly compared to cell sorting for the establishment of stable cells. Only the latter procedure could warrant a high degree of uniformity and stability in gene expression. Marker genes useful for the essential cell sorting step encode mostly fluorescent proteins. However, by combining this approach with site-specific recombination, it can be applied to isolate stable cell lines with the desired expression characteristics for any gene of interest
Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans
Germline mutations in BRAF and other components of the MAPK pathway are associated with the congenital syndromes collectively known as RASopathies. Here, we report the association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic analyses demonstrate that these genetic variants are gain-of-function mutations leading to activation of the MAPK pathway. Activation of the MAPK pathway by conditional expression of the BrafV600E/+ allele, or the knock-in BrafQ241R/+ allele (corresponding to the most frequent human CFC-causing mutation, BRAF p.Q257R), leads to abnormal cell lineage determination and terminal differentiation of hormone-producing cells, causing hypopituitarism. Expression of the BrafV600E/+ allele in embryonic pituitary progenitors leads to an increased expression of cell cycle inhibitors, cell growth arrest and apoptosis, but not tumour formation. Our findings show a critical role of BRAF in hypothalamo-pituitary-axis development both in mouse and human and implicate mutations found in RASopathies as a cause of endocrine deficiencies in humans
The bactericidal effect of dendritic copper microparticles, contained in an alginate matrix, on Escherichia coli.
Although the bactericidal effect of copper has been known for centuries, there is a current resurgence of interest in the use of this element as an antimicrobial agent. During this study the use of dendritic copper microparticles embedded in an alginate matrix as a rapid method for the deactivation of Escherichia coli ATCC 11775 was investigated. The copper/alginate produced a decrease in the minimum inhibitory concentration from free copper powder dispersed in the media from 0.25 to 0.065 mg/ml. Beads loaded with 4% Cu deactivated 99.97% of bacteria after 90 minutes, compared to a 44.2% reduction in viability in the equivalent free copper powder treatment. There was no observed loss in the efficacy of this method with increasing bacterial loading up to 10(6) cells/ml, however only 88.2% of E. coli were deactivated after 90 minutes at a loading of 10(8) cells/ml. The efficacy of this method was highly dependent on the oxygen content of the media, with a 4.01% increase in viable bacteria observed under anoxic conditions compared to a >99% reduction in bacterial viability in oxygen tensions above 50% of saturation. Scanning electron micrographs (SEM) of the beads indicated that the dendritic copper particles sit as discrete clusters within a layered alginate matrix, and that the external surface of the beads has a scale-like appearance with dendritic copper particles extruding. E. coli cells visualised using SEM indicated a loss of cellular integrity upon Cu bead treatment with obvious visible blebbing. This study indicates the use of microscale dendritic particles of Cu embedded in an alginate matrix to effectively deactivate E. coli cells and opens the possibility of their application within effective water treatment processes, especially in high particulate waste streams where conventional methods, such as UV treatment or chlorination, are ineffective or inappropriate
- …