3,064 research outputs found
Radiation tolerance studies of silicon microstrip sensors for the CBM Silicon Tracking System
Double-sided silicon microstrip sensors will be used in the Silicon Tracking System of the CBM experiment. During experimental run they will be exposed to a radiation field of up to 1x1014 1 MeV neq cm-2. Radiation tolerance studies were made on prototypes from two different vendors. Results from these prototype detectors before and after irradiation to twice that neutron fluence are discussed
Proceedings of the third French-Ukrainian workshop on the instrumentation developments for HEP
The reports collected in these proceedings have been presented in the third
French-Ukrainian workshop on the instrumentation developments for high-energy
physics held at LAL, Orsay on October 15-16. The workshop was conducted in the
scope of the IDEATE International Associated Laboratory (LIA). Joint
developments between French and Ukrainian laboratories and universities as well
as new proposals have been discussed. The main topics of the papers presented
in the Proceedings are developments for accelerator and beam monitoring,
detector developments, joint developments for large-scale high-energy and
astroparticle physics projects, medical applications.Comment: 3rd French-Ukrainian workshop on the instrumentation developments for
High Energy Physics, October 15-16, 2015, LAL, Orsay, France, 94 page
Mean-field phase diagram of disordered bosons in a lattice at non-zero temperature
Bosons in a periodic lattice with on-site disorder at low but non-zero
temperature are considered within a mean-field theory. The criteria used for
the definition of the superfluid, Mott insulator and Bose glass are analysed.
Since the compressibility does never vanish at non-zero temperature, it can not
be used as a general criterium. We show that the phases are unambiguously
distinguished by the superfluid density and the density of states of the
low-energy exitations. The phase diagram of the system is calculated. It is
shown that even a tiny temperature leads to a significant shift of the boundary
between the Bose glass and superfluid
Numerical study of one-dimensional and interacting Bose-Einstein condensates in a random potential
We present a detailed numerical study of the effect of a disordered potential
on a confined one-dimensional Bose-Einstein condensate, in the framework of a
mean-field description. For repulsive interactions, we consider the
Thomas-Fermi and Gaussian limits and for attractive interactions the behavior
of soliton solutions. We find that the disorder average spatial extension of
the stationary density profile decreases with an increasing strength of the
disordered potential both for repulsive and attractive interactions among
bosons. In the Thomas Fermi limit, the suppression of transport is accompanied
by a strong localization of the bosons around the state k=0 in momentum space.
The time dependent density profiles differ considerably in the cases we have
considered. For attractive Bose-Einstein condensates, a bright soliton exists
with an overall unchanged shape, but a disorder dependent width. For weak
disorder, the soliton moves on and for a stronger disorder, it bounces back and
forth between high potential barriers.Comment: 13 pages, 13 figures, few typos correcte
Performance and Radiation Tolerance of the Helix128-2.2 and 3.0 Readout Chips for the HERA-B Microstrip Detectors
Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases
Disorder plays a crucial role in many systems particularly in solid state
physics. However, the disorder in a particular system can usually not be chosen
or controlled. We show that the unique control available for ultracold atomic
gases may be used for the production and observation of disordered quantum
degenerate gases. A detailed analysis of localization effects for two possible
realizations of a disordered potential is presented. In a theoretical analysis
clear localization effects are observed when a superlattice is used to provide
a quasiperiodic disorder. The effects of localization are analyzed by
investigating the superfluid fraction and the localization length within the
system. The theoretical analysis in this paper paves a clear path for the
future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
Chicago, IL, June 27 - July 3, 200
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
- …
