375 research outputs found

    Inflammation and CFTR: might neutrophils be the key in cystic fibrosis?

    Get PDF
    The aim of this hypothesis is to provide new insights into the still unclear mechanisms governing airway inflammation in cystic fibrosis. Although the genetic basis of cystic fibrosis as well as the molecular structure of cystic fibrosis transmembrane regulator (CFTR), the mutated protein which causes the disease, have been well defined, a clear relationship between the genetic defect and the pulmonary pathophysiology, especially chronic infections and neutrophil-dominated airway inflammation has not been established. Cystic fibrosis is thus a unique pathological situation in that neutrophils can be depicted as both an antiinfectious and a proinflammatory cell. In cystic fibrosis there is an emerging picture of an imbalance between these two roles with both a reduction in the antiinfectious efficacy and an augmentation of the proinflammatory functions. Better knowledge of fundamental defects in neutrophil function in cystic fibrosis as well as a novel cellular function of CFTR, which will be reviewed, will allow identification of potentially new clinical targets and aid selective therapeutic action aimed at counteracting the lethal neutrophil-induced airway inflammation. The rationale for colchicine therapy is a significant example of a drug which might act both at the molecular levels on CFTR expression in epithelial cells and on neutrophils to mediate antiinflammatory effects. Preliminary results are presented in this issue (Med Inflamm 1999; 8: 13-15)

    The neutrophil: A key resourceful agent in immune-mediated vasculitis

    Get PDF
    The term “vasculitis” refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to “set the tone” for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease

    Targeting cytosolic proliferating cell nuclear antigen in neutrophil-dominated inflammation.

    Get PDF
    New therapeutic approaches that can accelerate neutrophil apoptosis under inflammatory conditions to enhance the resolution of inflammation are now under study. Neutrophils are deprived of proliferative capacity and have a tightly controlled lifespan to avoid their persistence at the site of injury. We have recently described that the proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repair of proliferating cells is a key regulator of neutrophil survival. The nuclear-to-cytoplasmic relocalization occurred during granulocytic differentiation and is dependent on a nuclear export sequence thus strongly suggesting that PCNA has physiologic cytoplasmic functions. In this review, we will try to put into perspective the physiologic relevance of PCNA in neutrophils. We will discuss key issues such as molecular structure, post-translational modifications, based on our knowledge of nuclear PCNA, assuming that similar principles governing its function are conserved between nuclear and cytosolic PCNA. The example of cystic fibrosis that features one of the most intense neutrophil-dominated pulmonary inflammation will be discussed. We believe that through an intimate comprehension of the cytosolic PCNA scaffold based on nuclear PCNA knowledge, novel pathways regulating neutrophil survival can be unraveled and innovative agents can be developed to dampen inflammation where it proves detrimental

    Inflammation and premature aging in advanced chronic kidney disease

    Get PDF
    Systemic inflammation in end-stage renal disease (ESRD) is an established risk factor for mortality and a catalyst for other complications which are related to a premature aging phenotype, including muscle wasting, vascular calcification and other forms of premature vascular disease, depression, osteoporosis and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have direct effect on cellular and tissue function. In addition to uremia-specific causes such as abnormalities in the phosphate- Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect are abnormal or misplaced protein structures as well as abnormalities in tissue homeostasis, which evoke danger signals through damage associated molecular patters (DAMPS) as well as the senescence associated secretory phenotype (SASP). Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserve, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relation between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences are discussed

    Interest of colchicine for the treatment of cystic fibrosis patients. Preliminary report.

    Get PDF
    Cystic fibrosis (CF) lung disease is characterized by persistent inflammation. Antiinflammatory drugs, such as corticosteroids and ibuprofen, have proved to slow the decline of pulmonary function although their use is limited because of frequent adverse events. We hypothesized that colchicine could be an alternative treatment because of its antiinflammatory properties and upregulatory effect on cystic fibrosis transmembrane regulator (CFTR) closely related proteins. We herein present results obtained in an open study of eight CF children treated with colchicine for at least 6 months. Clinical status was better in all patients and respiratory function tests significantly improved in five. Median duration of antibiotherapy decreased significantly. These preliminary results support our hypothesis of a beneficial effect of colchicine in CF patients and stress the need for a controlled therapeutic trial

    Characterization of cytosolic proliferating cell nuclear antigen (PCNA) in neutrophils: antiapoptotic role of the monomer.

    Get PDF
    We have shown previously that PCNA, a nuclear factor involved in DNA replication and repair in proliferating cells, is localized exclusively in the cytoplasm of neutrophils, where it regulates their survival. Nuclear PCNA functions are tightly linked to its ring-shaped structure, which allows PCNA to bind to numerous partner proteins to orchestrate DNA-related processes. We have shown that only monomeric PCNA can expose its NES to be relocalized from nucleus to cytosol during granulocyte differentiation. This study tested the hypothesis that monomeric PCNA could have a biological role in neutrophils. With the use of a combination of cross-linking and gel-filtration experiments, trimeric and monomeric PCNAs were detected in neutrophil cytosol. The promyelocytic cell line PLB985 was next stably transfected to express the monomeric PCNAY114A mutant to examine its function compared with the WT trimeric PCNA. Monomeric PCNAY114A mutant potentiated DMF-induced differentiation, as evidenced by an increased percentage of CD11b- and gp91phox-positive PLB985PCNAY114A cells and by an increased, opsonized zymosan-triggered NADPH oxidase activity compared with PLB985PCNA or PLB985 cells overexpressing WT PCNA or the empty plasmid, respectively. Regarding antiapoptotic activity, DMF-differentiated PLB985 cells overexpressing WT or the monomeric PCNAY114A mutant displayed a similar antiapoptotic activity following treatment with gliotoxin or TRAIL compared with PLB985. The molecular basis through which cytoplasmic PCNA exerts its antiapoptotic activity in mature neutrophils may, at least in part, be independent of the trimeric conformation

    Clinical relevance of biomarkers of oxidative stress

    Get PDF
    SIGNIFICANCE Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. FUTURE DIRECTIONS Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 00, 000-000

    A phase II study on safety and efficacy of high-dose N-acetylcysteine in patients with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>We conducted a single-centre, randomised, double-blinded, placebo-controlled phase II clinical study to test safety and efficacy of a 12-week therapy with low-dose (700 mg/daily) or high-dose (2800 mg/daily) of NAC.</p> <p>Methods</p> <p>Twenty-one patients (ΔF508 homo/heterozygous, FEV<sub>1 </sub>> 40% pred.) were included in the study. After a 3-weeks placebo run-in phase, 11 patients received low-dose NAC, and 10 patients received high-dose NAC. Outcomes included safety and clinical parameters, inflammatory (total leukocyte numbers, cell differentials, TNF-α, IL-8) measures in induced sputum, and concentrations of extracellular glutathione in induced sputum and blood.</p> <p>Results</p> <p>High-dose NAC was a well-tolerated and safe medication. High-dose NAC did not alter clinical or inflammatory parameters. However, extracellular glutathione in induced sputum tended to increase on high-dose NAC.</p> <p>Conclusions</p> <p>High-dose NAC is a well-tolerated and safe medication for a prolonged therapy of patients with CF with a potential to increase extracellular glutathione in CF airways.</p

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules
    corecore