487 research outputs found

    Quantum Decoherence in a Four-Dimensional Black Hole Background

    Get PDF
    We display a logarithmic divergence in the density matrix of a scalar field in the presence of an Einstein-Yang-Mills black hole in four dimensions. This divergence is related to a previously-found logarithmic divergence in the entropy of the scalar field, which cannot be absorbed into a renormalization of the Hawking-Bekenstein entropy of the black hole. As the latter decays, the logarithmic divergence induces a non-commutator term \nd{\delta H}\rho in the quantum Liouville equation for the density matrix ρ\rho of the scalar field, leading to quantum decoherence. The order of magnitude of \nd{\delta H} is Ό2/MP\mu^2/M_P, where Ό\mu is the mass of the scalar particle.Comment: 13-pages LATE

    Regular and Black Hole Solutions in the Einstein-Skyrme Theory with Negative Cosmological Constant

    Full text link
    We study spherically symmetric regular and black hole solutions in the Einstein-Skyrme theory with a negative cosmological constant. The Skyrme field configuration depends on the value of the cosmological constant in a similar manner to effectively varying the gravitational constant. We find the maximum value of the cosmological constant above which there exists no solution. The properties of the solutions are discussed in comparison with the asymptotically flat solutions. The stability is investigated in detail by solving the linearly perturbed equation numerically. We show that there exists a critical value of the cosmological constant above which the solution in the branch representing unstable configuration in the asymptotically flat spacetime turns to be linearly stable.Comment: 10 pages, 9 figures, comments and one reference added, to appear in Class.Quant.Gra

    Quantum superradiance on static black hole space-times

    Get PDF
    We study the quantum analogue of the classical process of superradiance for a massless charged scalar field on a static charged black hole space-time. We show that an “in” vacuum state, which is devoid of particles at past null infinity, contains an outgoing flux of particles at future null infinity. This radiation is emitted in the superradiant modes only, and is nonthermal in nature

    Hadamard renormalization for a charged scalar field

    Get PDF
    The Hadamard representation of the Green's function of a quantum field on a curved space-time is a powerful tool for computations of renormalized expectation values. We study the Hadamard form of the Feynman Green's function for a massive charged complex scalar field in an arbitrary number of space-time dimensions. Explicit expressions for the coefficients in the Hadamard parametrix are given for two, three and four space-time dimensions. We then develop the formalism for the Hadamard renormalization of the expectation values of the scalar field condensate, current and stress-energy tensor. These results will have applications in the computation of renormalized expectation values for a charged quantum scalar field on a charged black hole space-time, and hence in addressing issues such as the quantum stability of the inner horizon

    Hadamard parametrix of the Feynman Green's function of a five-dimensional charged scalar field

    Get PDF
    The Hadamard parametrix is a representation of the short-distance singularity structure of the Feynman Green's function for a quantum field on a curved space-time background. Subtracting these divergent terms regularizes the Feynman Green's function and enables the computation of renormalized expectation values of observables. We study the Hadamard parametrix for a charged, massive, complex scalar field in five space-time dimensions. Even in Minkowski space-time, it is not possible to write the Feynman Green's function for a charged scalar field exactly in closed form. We therefore present covariant Taylor series expansions for the biscalars arising in the Hadamard parametrix. On a general space-time background, we explicitly state the expansion coefficients up to the order required for the computation of the renormalized scalar field current. These coefficients become increasingly lengthy as the order of the expansion increases, so we give the higher-order terms required for the calculation of the renormalized stress-energy tensor in Minkowski space-time only

    Decoherent Scattering of Light Particles in a D-Brane Background

    Get PDF
    We discuss the scattering of two light particles in a D-brane background. It is known that, if one light particle strikes the D brane at small impact parameter, quantum recoil effects induce entanglement entropy in both the excited D brane and the scattered particle. In this paper we compute the asymptotic `out' state of a second light particle scattering off the D brane at large impact parameter, showing that it also becomes mixed as a consequence of quantum D-brane recoil effects. We interpret this as a non-factorizing contribution to the superscattering operator S-dollar for the two light particles in a Liouville D-brane background, that appears when quantum D-brane excitations are taken into account.Comment: 18 pages LATEX, one figure (incorporated

    Vacuum polarization for lukewarm black holes

    Get PDF
    We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordström–de Sitter black hole in which the temperatures of the event and cosmological horizons are equal (“lukewarm” black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case

    Densovirus induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis plantaginea

    Get PDF
    Winged morphs of aphids are essential for their dispersal and survival. We discovered that the production of the winged morph in asexual clones of the rosy apple aphid, Dysaphis plantaginea, is dependent on their infection with a DNA virus, Dysaphis plantaginea densovirus (DplDNV). Virus-free clones of the rosy apple aphid, or clones infected singly with an RNA virus, rosy apple aphid virus (RAAV), did not produce the winged morph in response to crowding and poor plant quality. DplDNV infection results in a significant reduction in aphid reproduction rate, but such aphids can produce the winged morph, even at low insect density, which can fly and colonize neighboring plants. Aphids infected with DplDNV produce a proportion of virus-free aphids, which enables production of virus-free clonal lines after colonization of a new plant. Our data suggest that a mutualistic relationship exists between the rosy apple aphid and its viruses. Despite the negative impact of DplDNV on rosy apple aphid reproduction, this virus contributes to their survival by inducing wing development and promoting dispersal

    A Very High Speed True Random Number Generator with Entropy Assessment

    No full text
    International audienceThe proposed true random number generator (TRNG) exploits the jitter of events propagating in a self-timed ring (STR) to generate random bit sequences at a very high bit rate. It takes advantage of a special feature of STRs that allows the time elapsed between successive events to be set as short as needed, even in the order of picoseconds. If the time interval between the events is set in concordance with the clock jitter magnitude, a simple entropy extraction scheme can be applied to generate random numbers. The proposed STR-based TRNG (STRNG) follows AIS31 recommendations: by using the proposed stochastic model, designers can compute a lower entropy bound as a function of the STR characteristics (number of stages, oscillation period and jitter magnitude). Using the resulting entropy assessment, they can then set the compression rate in the arithmetic post-processing block to reach the required security level determined by the entropy per output bit. Implementation of the generator in two FPGA families confirmed its feasibility in digital technologies and also confirmed it can provide high quality random bit sequences that pass the statistical tests required by AIS31 at rates as high as 200 Mbit/s

    Superradiance and quantum states on black hole space-times

    Get PDF
    We consider the definition of the Boulware and Hartle-Hawking states for quantum fields on black hole space-times. The properties of these states on a Schwarzschild black hole have been understood for many years, but neither of these states has a direct analogue on a Kerr black hole. We show how superradiant modes play an important role in the definition of quantum states on Kerr. Superradiance is also present on static black hole space-times, in particular for a charged scalar field on a Reissner-Nordström black hole. We explore whether analogues of the Boulware and Hartle-Hawking states exist in this situation
    • 

    corecore