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The Hadamard parametrix is a representation of the short-distance singularity structure

of the Feynman Green’s function for a quantum field on a curved space-time background.

Subtracting these divergent terms regularizes the Feynman Green’s function and en-

ables the computation of renormalized expectation values of observables. We study the

Hadamard parametrix for a charged, massive, complex scalar field in five space-time di-

mensions. Even in Minkowski space-time, it is not possible to write the Feynman Green’s

function for a charged scalar field exactly in closed form. We therefore present covariant

Taylor series expansions for the biscalars arising in the Hadamard parametrix. On a

general space-time background, we explicitly state the expansion coefficients up to the

order required for the computation of the renormalized scalar field current. These coeffi-

cients become increasingly lengthy as the order of the expansion increases, so we give the

higher-order terms required for the calculation of the renormalized stress-energy tensor

in Minkowski space-time only.

1. Introduction

Finding a definitive theory of quantum gravity, in which the gravitational field and

matter are fully quantized, remains one of the most important open questions in

fundamental physics (see, for example, [1] for a review). One avenue to elucidating

some of the features of a full theory of quantum gravity is to take a semiclassical

approach, namely quantum field theory on curved space-time. In this set-up, the

gravitational field and space-time geometry remain fixed and classical, with only

the matter fields quantized (see, for example, [2–6] for reviews). This approach is

informative because a theory of quantum gravity, if it is to be successful, must

give results identical to those of quantum field theory on curved space-time in an

appropriate limit. Quantum field theory on curved space-time has also revealed

many deep and significant physical effects, including the creation of particles in an

expanding universe [7–9], the Unruh effect [10–13] and the Hawking radiation of

black holes [14, 15].
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In order to study the physics of a quantum field theory on a particular curved

space-time, it is useful to compute expectation values of observables in a chosen

quantum state. For example, the stress-energy tensor Tµν contains valuable infor-

mation about the energy density and fluxes of the quantum field. Expectation values

of observables typically involve products of field operators at the same space-time

point. Even for the simplest type of quantum field, a free neutral scalar field, on

the simplest space-time, namely Minkowski space-time, such expectation values are

formally infinite. For a free quantum field on flat space-time, this is easily rectified

by setting the expectation value of Tµν to vanish in the global Minkowski vacuum,

and effectively considering differences in expectation values between a chosen quan-

tum state and the vacuum. As we shall explain later, for a quantum field on curved

space-time, these infinities are not so straightforwardly regularized.

Many different approaches to dealing with these infinities in expectation val-

ues have been developed, including De-Witt Schwinger, dimensional, Pauli-Villars,

adiabatic and zeta-function regularization [2–6]. Expectation values of observables

such as the stress-energy tensor can be computed from the Feynman Green’s func-

tion of the quantum field, so the problem of regularizing expectation values can be

solved by regularizing the Feynman Green’s function. In this paper, we focus on one

representation of the short-distance singularity structure of the Feynman Green’s

function, namely the Hadamard parametrix. Physically reasonable quantum states

have a Feynman Green’s function with this singularity structure [16]. Finding the

Hadamard parametrix for a quantum field on a curved space-time background is

therefore the first step to regularizing the Feynman Green’s function and hence

computing expectation values of observables.

In this report we study the Hadamard parametrix of the Feynman Green’s func-

tion for a charged, massive, complex scalar field with arbitrary coupling to the

space-time curvature. We begin, in section 2, by briefly outlining the key equations

of such a charged scalar field theory in d space-time dimensions, including expres-

sions for the expectation values of observables in terms of the Feynman Green’s

function. For the rest of the paper, we restrict our attention to d = 5 space-time

dimensions. This case is of particular interest for Kaluza-Klein theory [17, 18], as

well as brane-world [19–21] and Randall-Sundrum scenarios [22,23]. The Hadamard

parametrix of the Feynman Green’s function in five dimensions is outlined in sec-

tion 3, following our previous work [24]. The Hadamard parametrix depends on a

set of biscalars which cannot be determined in closed form. In section 4 covari-

ant Taylor series expansions of these biscalars are derived in detail. We work to

the order required for the computation of the renormalized stress-energy tensor,

but present explicit general expressions for the expansion coefficients only up to

the order required for the computation of the renormalized current. The higher-

order terms needed for finding the renormalized stress-energy tensor are extremely

lengthy, so we give them only on Minkowski space-time. These results extend the

work of [24], where the covariant Taylor series expansions were given for d = 2, 3, 4.

Our conclusions are presented in section 5.
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2. Charged scalar field theory

In d-dimensional flat space-time, a neutral scalar field Φ of mass m is governed by

the Klein-Gordon equation

[
∂µ∂

µ −m2
]
Φ = 0. (2.1)

In this model, the scalar field Φ takes real values and we are considering only a free

scalar field with no self-interaction potential. It is also possible to consider a free

complex scalar field Φ satisfying (2.1). The model can be extended to a complex

scalar field with charge q, minimally coupled to an electromagnetic field Fµν derived

from an electromagnetic potential Aµ by replacing the partial derivatives ∂µ with

gauge covariant derivatives ∂µ−iqAµ. In this paper we make a further generalization,

and consider a charged complex scalar field on a general d-dimensional curved space-

time background, in which case the partial derivatives ∂µ are replaced by space-time

covariant derivatives ∇µ and (2.1) becomes

[
DµD

µ −m2 − ξR
]
Φ = 0, (2.2)

where Dµ = ∇µ − iqAµ. In (2.2) we have included a nonmiminal coupling between

the scalar field and the space-time curvature scalar R, where ξ is the coupling

constant. If we set ξ = 0, the scalar field is minimally coupled to the space-time

curvature. Here and throughout this paper we use units in which 8πG = c = ~ = 1

and the space-time metric has mostly plus signature.

We now consider the situation in which the scalar field Φ̂ has been quantized

but the background space-time geometry, given by the metric gµν , and the elec-

tromagnetic potential Aµ are fixed and classical. Thus our model is a version of

scalar QED, as has been studied recently on cosmological space-times in two [25]

and four [26] dimensions. In any quantum field theory, one is interested in the com-

putation of expectation values of observables. In our model, observables of interest

are the scalar field condensate, the current Ĵµ and the stress-energy tensor T̂µν .

Given a particular quantum state, the expectation values of these observables can

be computed from the Feynman Green’s function for the charged scalar field in that

state. A Green’s function for the charged scalar field equation (2.2) is a function

G(x, x′), depending on two space-time points, which satisfies the inhomogeneous

equation

[
DµD

µ −m2 − ξR
]
G(x, x′) = − [−g(x)]

− 1

2 δd(x− x′) (2.3)

where g(x) is the determinant of the space-time metric and δd(x − x′) is the d-

dimensional Dirac delta function. There are various different Green’s functions

which satisfy (2.3), corresponding to different choices of contour in momentum

space (see, for example, [3] for details). In this article we consider the Feynman

Green’s function GF(x, x
′), which corresponds to the following expectation value:

−iGF(x, x
′) =

〈
T
[
Φ̂(x)Φ̂†(x′)

]〉
. (2.4)
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Here T
[
Φ̂(x)Φ̂†(x′)

]
denotes the time-ordered product

T
[
Φ̂(x)Φ̂†(x′)

]
= Θ

(
x0 − x0′

)
Φ̂(x)Φ̂†(x′) + Θ

(
x0′ − x0

)
Φ̂†(x′)Φ̂(x), (2.5)

where Θ(x) is the Heaviside step function, and Φ̂† denotes the adjoint field operator

(which is not equal to Φ̂ for a complex scalar field). At first glance the definition

(2.5) depends on a choice of time coordinate. However, if the field operators com-

mute when the points x and x′ are space-like separated, then the Feynman Green’s

function is a biscalar quantity, that is, a scalar function of both x and x′.

The naive expectation value of the scalar field condensate corresponds to taking

the limit x′ → x in the Feynman Green’s function:

〈Φ̂Φ̂†〉ren = lim
x′→x

ℜ{−iGF(x, x
′)} , (2.6)

while the expectation values of the current and stress-energy tensor are, respectively,

〈Ĵµ〉 = − q

4π
lim
x′→x

ℑ{Dµ [−iGF(x, x
′)]} , (2.7)

where ℑ denotes the imaginary part and

〈T̂µν〉 = lim
x′→x

ℜ{Tµν(x, x′) [−iGF(x, x
′)]} , (2.8)

where ℜ denotes the real part and Tµν is the second order differential operator

Tµν = (1− 2ξ) gν
ν′

DµD
∗
ν′ +

(
2ξ − 1

2

)
gµνg

ρτ ′

DρD
∗
τ ′ − 2ξDµDν

+2ξgµνDρD
ρ + ξ

(
Rµν −

1

2
gµνR

)
− 1

2
m2gµν , (2.9)

with gµ
µ′

the bivector of parallel transport. In (2.9), we have D∗
µ = ∇µ + iqAµ

and the operator Dν′ acts at the space-time point x′. The presence of the Dirac

delta function on the right-hand-side of the governing equation (2.3) tells us that

the Feynman Green’s function is in fact singular in the limit x′ → x and therefore

the limits in (2.6–2.8) do not yield finite quantities. Therefore some method of

regularization (identifying the singularities) and renormalization (removing these

singularities to give finite expectation values) is required.

Both the Feynman Green’s function GF(x, x
′) and the expectation values (2.6–

2.8) are finite if the space-time points x and x′ are separated. Therefore we follow

the point-splitting approach to regularization [2, 27, 28], considering x and x′ to

be closely separated, but distinct, and such that there is a unique geodesic con-

necting them. Our main result in this paper is the derivation of an appropriate

parametrix (the Hadamard parametrix) GH(x, x
′) which has the same short-distance

divergences as GF(x, x
′). For concreteness, in this article we focus on the case of a

five-dimensional space-time (results for lower numbers of space-time dimensions can

be found in [24]). The next section outlines the form of GH(x, x
′) for a charged scalar

field in five space-time dimensions, which depends on a set of biscalars, dubbed the
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Hadamard parameters. In section 4 we derive covariant series expansions for these

Hadamard parameters. We shall see that GH(x, x
′) is independent of the state of the

quantum field, and depends only on the properties of the background space-time

geometry and electromagnetic potential.

3. Hadamard parametrix of the Feynman Green’s function in five

dimensions

In this section we study GH(x, x
′) for a charged scalar field in five space-time di-

mensions. We first consider the simpler system of a neutral scalar field on five-

dimensional Minkowski space-time, for which GH(x, x
′) can be given exactly in

closed form. This will enable us to examine the singularity structure in some detail

and motivate the general form of GH(x, x
′) for a charged scalar field on a curved

space-time background.

3.1. Neutral scalar field on five-dimensional flat space-time

Consider first a neutral scalar field on five-dimensional Minkowski space-time, sat-

isfying the Klein-Gordon equation (2.1). The Feynman Green’s function GM
F (x, x′)

then satisfies the inhomogeneous equation
[
∂µ∂

µ −m2
]
GM

F (x, x′) = −δ5(x− x′). (3.1)

Here and throughout this paper we use the label M to denote a quantity on

Minkowski space-time. In this case the Feynman Green’s function can be found

in closed form for all space-time points x, x′ [29]:

−iGM
F (x, x′) = − i

√
m3

32
√
π3

1

(σM − iǫ)
3

4

H
(2)
3

2

(
m
√

σM − iǫ
)
+WM(x, x′), (3.2)

where σM is one half the square of the distance between the two points in flat

space-time

σM =
1

2
ηµν(x

µ − x′µ)(xν − x′ν), (3.3)

and ηµν = diag{−1, 1, 1, 1, 1} is the five-dimensional Minkowski metric. In (3.2) we

have assumed that σM > 0 and the points are space-like separated. For simplicity

of exposition, we shall assume space-like separation for the rest of this paper. In

addition, H
(2)
3

2

is a Hankel function of the second kind. The quantity ǫ → 0 is

introduced in (3.2) so that the Feynman Green’s function has the correct analyticity

properties and we shall set ǫ = 0 for the remainder of this paper. Finally, WM(x, x′)

is any solution of the homogeneous scalar field equation (2.1) and is therefore regular

in the coincidence limit x′ → x. If the quantum scalar field is in the vacuum state,

WM vanishes identically [29], but it is nonzero for a general quantum state.

The first term in (3.2) is the same for all quantum states and is singular in the

limit x′ → x. It is also singular when the points are null separated and σM = 0
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(this singularity is regulated by the iǫ term), but our interest in this paper is in the

short-distance singularity structure of the Feynman Green’s function. We therefore

define the singular part of the Feynman Green’s function to be

−iGS(x, x
′) = −iGM

F (x, x′)−WM(x, x′). (3.4)

The Feynman Green’s function can be regularized by subtracting GS(x, x
′) from

GM
F (x, x′), leaving the regular, state-dependent part equal to WM(x, x′). Renor-

malized expectation values are then computed by replacing the Feynman Green’s

function by WM(x, x′). This gives the renormalized expectation value of the scalar

field condensate (2.6) to be limx′→x [WM(x, x′)], and the renormalized expectation

value of the stress-energy tensor is given by (2.8) with the operator Tµν (2.9) acting

on WM(x, x′) rather than −iGM
F (x, x′). Since for the moment we are considering

only a neutral scalar field, the expectation value of the current (2.7) vanishes iden-

tically for all quantum states. When the quantum field is in the vacuum state and

WM(x, x′) is zero, the expectation values of the scalar field condensate and stress-

energy tensor are also zero, as expected.

For a general quantum state, the Feynman Green’s function is typically given

as a sum over mode solutions of the homogeneous scalar field equation (2.1). It can

therefore be useful to apply the differential operators arising in (2.7, 2.8) to the

Feynman Green’s function GM
F (x, x′) before subtracting the divergent parts arising

from the application of the operators to GS(x, x
′). To find these divergent parts,

we do not need to consider the exact expression for GS(x, x
′). Instead an expansion

in σM to sufficiently high order will suffice. The operator Tµν involves second order

derivatives, so in order to find the divergent parts of the expectation value of the

stress-energy tensor, we require the expansion ofGS(x, x
′) to orderO(σ2

M ). For a real

scalar field, we only require the expansion of ℜ{−iGS(x, x
′)} since all expectation

values are real. For small σM > 0, this is given by

ℜ{−iGS(x, x
′)} =

1

16
√
2π2σ

3

2

M

[
1 +

m2

2
σM − m4

8
σ2
M +

m6

144
σ3
M +O(σ4

M)

]
. (3.5)

The leading-order singularity in (3.5) is O(σ
− 3

2

M ) and we have obtained an expansion

of the form σ
− 3

2

M multiplied by a power series expansion in σM. If the scalar field is

massless, then the power series reduces to unity.

3.2. Charged scalar field on five-dimensional curved space-time

We now return to our main model, namely a charged scalar field on a curved space-

time background. In this case, unlike the simpler flat space-time example considered

in the previous subsection, it is not possible to derive the general solution of the

inhomogeneous scalar field equation (2.3) in closed form. However, the Feynman

Green’s function will still consist of two parts: a particular solution GH(x, x
′) of the

inhomogeneous equation (2.3) together with the general solution W (x, x′) of the
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homogeneous equation (2.2):

−iGF(x, x
′) = −iGH(x, x

′) +W (x, x′). (3.6)

As a solution of the homogeneous scalar field equation, W (x, x′) is regular in the

limit x′ → x. Furthermore, W (x, x′) depends on the particular quantum state under

consideration. In contrast, GH(x, x
′) is singular in the limit x′ → x and, since it is

a particular solution of the inhomogeneous equation, it is the same for all quantum

states. The renormalization procedure for a charged scalar field in curved space-

time is therefore analogous to that described above for a neutral scalar field in flat

space-time. The Feynman Green’s function is regularized by subtracting GH(x, x
′)

and renormalized expectation values of operators are evaluated by acting with the

appropriate differential operators on W (x, x′) and then taking the limit x′ → x.

The above procedure depends on the choice of particular solution GH(x, x
′).

In Minkowski space-time, the particular solution of the inhomogeneous scalar field

equation was simply the Feynman Green’s function for the vacuum state. In a gen-

eral curved space-time, there is no natural choice of vacuum state [3] so an alterna-

tive method of determining GH(x, x
′) is required. The choice of GH(x, x

′) must yield

physically sensible results for the renormalized expectation values of observables.

A set of physically-motivated axioms which must be satisfied by the renormalized

stress-energy tensor was developed by Wald [5, 30]. We therefore require GH(x, x
′)

to be such that the renormalized stress-energy tensor satisfies Wald’s axioms. It

has been rigorously established (see for example [31–39] and the references given

in [40]) that the singular part of the Hadamard representation of GF(x, x
′) yields a

suitable GH(x, x
′) which, via the above subtraction procedure (known in this case as

Hadamard renormalization), leads to a renormalized stress-energy tensor satisfying

Wald’s axioms. We therefore devote the rest of this paper to deriving the form of

the Hadamard parametrix GH(x, x
′) for a charged scalar field on a five-dimensional

curved space-time. We first review some geometric quantities which arise in the

Hadamard parametrix.

3.3. Geometric quantities in the Hadamard parametrix

In order to regularize the Feynman Green’s function GF(x, x
′), we only require

the short-distance behaviour of the singular Hadamard parametrix GH(x, x
′). We

therefore assume that the space-time point x′ lies in a normal neighbourhood of the

point x, so that there is a unique geodesic connecting the two points. The geodesic

distance σ(x, x′) between x and x′ is then well-defined. It satisfies the curved-space

generalization of equation (3.3):

2σ = gµνσ
;µσ;ν , (3.7)

where σ;µ = ∇µσ and gµν is the curved space-time metric. From (3.5), it is antic-

ipated that the short-distance behaviour of GH(x, x
′) will depend on σ(x, x′) (but

not necessarily just on σ(x, x′) as in flat space-time). Since GH(x, x
′) satisfies the
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inhomogeneous scalar field equation (2.3), we will need to apply the curved space-

time Laplacian ∇µ∇µ to σ(x, x′). In five-dimensional Minkowski space-time, this

yields simply

∂µ∂µσM = δµµ = 5, (3.8)

however in five-dimensional curved space-time we have

∇µ∇µσ = 5− 2∆− 1

2∆
1

2

;µσ
;µ. (3.9)

Here the biscalar ∆(x, x′) is the Van Vleck-Morette determinant [41, 42]

∆(x, x′) = − [−g(x)]
− 1

2 det [−σ;µν′(x, x′)] [−g(x′)]
− 1

2 , (3.10)

where a subscript ; ν′ denotes the space-time covariant derivative∇ν′ with respect to

the space-time point x′. In Minkowski space-time, using (3.3), it is straightforward

to show that ∆M(x, x′) ≡ 1 for all x, x′. In a curved space-time, the coincidence limit

x′ → x of geometric quantities can be derived by considering normal coordinates at

the fixed space-time point x. Then the leading-order behaviour of both σ(x, x′) and

g(x), g(x′) in this coordinate system is the same as in Minkowski space-time, thus

∆(x, x) = 1. (3.11)

For a general curved space-time ∆(x, x′) is not identically unity. If ∆(x, x′) < 1, a

congruence of geodesics emanating from the space-time point x is expanding, while

∆(x, x′) > 1 indicates that the congruence is focussing [42,43].

In Minkowski space-time, the singular part of the Feynman Green’s function for

a neutral scalar field can be written in closed form using a Hankel function (3.2),

and has a short-distance expansion which depends only on σM (3.5). Therefore the

singular part of the Feynman Green’s function for a neutral scalar field depends

only on the distance between the space-time points x and x′. This is due to the

maximal symmetry of Minkowski space-time. In anti-de Sitter space-time, which

is a curved space-time with maximal symmetry, the singular part of the Feynman

Green’s function for a neutral scalar field also depends only on the geodesic distance

σ(x, x′) between the points [44]. However, in a general curved space-time, this will

not be the case, and GH(x, x
′) will depend on the direction in which the points

are separated as well as the geodesic distance between them. Even in Minkowski

space-time, if we consider a charged scalar field, the presence of the background

electromagnetic potential Aµ breaks the maximal symmetry and the singular part

of the Feynman Green’s function will be direction-dependent.

To take this into account, if we were considering a particular given space-time,

one could choose a coordinate patch and expand GH(x, x
′) in terms of the coordinate

separation of the points. However, here we are seeking to develop a general formalism

and therefore we will derive a covariant series expansion of GH(x, x
′), which can then

be implemented on a given space-time using appropriate coordinates. The covariant
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series expansion of a general biscalar K(x, x′) involves the tangent vector σ;µ to the

geodesic connecting x to x′:

K(x, x′) = k0(x) + k1µ(x)σ
;µ + k2µν(x)σ

;µσ;ν + k3µνλ(x)σ
;µσ;νσ;λ + . . . , (3.12)

where the coefficients k0, k1µ, k2µν , k3µνλ, etc. depend only on the space-time point

x. In a particular coordinate system on a given space-time, the tangent vector

σ;µ can be written in terms of the coordinate separation of the points, to give a

Taylor series expansion of K(x, x′) in that coordinate system (see for example the

expansions on a four-dimensional black hole space-time in Appendix B of [45]). From

(3.7), we can regard σ;µ as being O(σ
1

2 ) and hence, in five-dimensional space-time,

we shall ultimately require the covariant series expansion of GH(x, x
′) up to and

including terms of the form σ;α1σ;α2σ;α3σ;α4σ;α5 .

In our calculations in section 4, we will require the covariant Taylor series expan-

sions of the quantities σ;µν , the square root of the Van Vleck-Morette determinant

∆
1

2 , the quantity ∆− 1

2∆
1

2

;µσ
;µ and �∆

1

2 = ∇µ∇µ∆
1

2 , all of which can be found to

high order in [46]. To the order we require, the expansion for σ;µν is

σ;µν = gµν −
1

3
Rµα1να2

σ;α1σ;α2 +
1

12
Rµα1να2;α3

σ;α1σ;α2σ;α3

−
[
1

60
Rµα1να2;α3α4

+
1

45
Rµα1ρα2

Rρα3να4

]
σ;α1σ;α2σ;α3σ;α4

+

[
1

360
Rµα1να2;α3α4α5

+
1

120
Rµα1ρα2

Rρα3να4;α5

+
1

120
Rµα1ρα2;α3

Rρα4να5

]
σ;α1σ;α2σ;α3σ;α4σ;α5 + . . . , (3.13a)

while that for ∆
1

2 is

∆
1

2 = 1 +
1

12
Rα1α2

σ;α1σ;α2 − 1

24
Rα1α2;α3

σ;α1σ;α2σ;α3

+

[
1

80
Rα1α2;α3α4

+
1

360
Rρα1τα2

Rτα3ρα4

+
1

288
Rα1α2

Rα3α4

]
σ;α1σ;α2σ;α3σ;α4

−
[

1

360
Rα1α2;α3α4α5

+
1

360
Rρα1τα2

Rτα3ρα4;α5

+
1

288
Rα1α2

Rα3α4;α5

]
σ;α1σ;α2σ;α3σ;α4σ;α5 + . . . , (3.13b)
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for ∆− 1

2∆
1

2

;µσ
;µ we have

∆− 1

2∆
1

2

;µσ
;µ =

1

6
Rα1α2

σ;α1σ;α2 − 1

24
Rα1α2;α3

σ;α1σ;α2σ;α3

+

[
1

120
Rα1α2;α3α4

+
1

90
Rρα1τα2

Rτα3ρα4

]
σ;α1σ;α2σ;α3σ;α4

−
[

1

720
Rα1α2;α3α4α5

+
1

120
Rρα1τα2

Rτα3ρα4;α5

]
σ;α1σ;α2σ;α3σ;α4σ;α5

+ . . . , (3.13c)

and finally, for �∆
1

2 we only require the expansion to O(σ
3

2 ), which is

�∆
1

2 =
1

6
R+

[
1

40
�Rα1α2

− 1

120
R;α1α2

+
1

72
RRα1α2

− 1

30
Rρα1

Rρα2

+
1

60
RρτRρα1τα2

+
1

60
Rρκτα1

Rρκτα2

]
σ;α1σ;α2

+

[
1

360
R;α1α2α3

− 1

120
(�Rα1α2

);α3
− 1

144
RRα1α2;α3

+
1

45
Rρα1

Rρα2;α3

− 1

180
Rρτ ;α1

Rτα2ρα3
− 1

180
RρτR

τ
α1ρα2;α3

− 1

90
Rρκτα1

Rρκτα2;α3

]
σ;α1σ;α2σ;α3 + . . . . (3.13d)

We also require the expansion of ∆
1

2

;µ to O(σ2). This can be found by differentiating

(3.13b) and simplifying using (3.13a):

∆
1

2

;µ =
1

6
Rµα1

σ;α1 +

[
1

24
Rα1α2;µ − 1

12
Rµ(α1;α2)

]
σ;α1σ;α2

+

[
1

40
Rµ(α1;α2α3) −

1

60
R(α1α2;|µ|α3) +

1

72
Rµ(α1

Rα2α3)

+
1

90
Rρµτ(α1

Rτα2|ρ|α3) +
1

360
Rρ(α1

Rρα2|µ|α3)

]
σ;α1σ;α2σ;α3

+

[
1

240
R(α1α2;α3α4)µ − 1

180
Rµ(α1;α2α3α4) +

1

288
R(α1α2

Rα3α4);µ

− 1

144
Rµ(α1;α2

Rα3α4) −
1

144
Rµ(α1

Rα2α3;α4) +
1

90
Rρ(α1;α2

Rρα3|µ|α4)

+
1

120
Rρ(α1|µ|α2

Rα3α4);ρ +
1

120
Rρ(α1

Rρα2|µ|α3;α4)

+
1

360
Rρ(α1|τ |α2

Rτα3|ρ|α4);µ − 1

360
Rρµτ(α1

Rτα2|ρ|α3;α4)

− 1

360
Rρ(α1|τ |α2

Rτ |µρ|α3;α4) −
1

360
Rρ(α1|τ |α2

Rτα3|ρµ|;α4)

− 1

360
Rρ(α1|τµ|R

τ
α2|ρ|α3;α4)

]
σ;α1σ;α2σ;α3σ;α4 + . . . . (3.13e)
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The notation (. . .) denotes symmetrization over the indices enclosed in the brack-

ets, with vertical bars |ρ| surrounding indices ρ which are not included in the sym-

metrization. In the covariant series expansions (3.13a–3.13b), all terms except the

zeroth order ones depend on curvature tensors and hence vanish in flat space-time.

Therefore, in Minkowski space-time, we have σ;µν = ηµν and ∆(x, x′) = 1, as ex-

pected. In addition, �∆
1

2 (3.13d) and ∆
1

2

;µ (3.13e) depend only on curvature tensors

and so vanish in Minkowski space-time. We emphasize that the quantities σ(x, x′)

and ∆(x, x′) are purely geometric and independent of the scalar field parameters q,

m and ξ. In particular, the expansions (3.13) are valid whether we are considering

a neutral or charged scalar field.

3.4. Hadamard parametrix for the singular part of the Feynman

Green’s function

For a charged scalar field on a five-dimensional curved space-time, the singular part

of the Hadamard representation of the Feynman Green’s function takes the form [24]

−iGH(x, x
′) =

1

16
√
2π2

U(x, x′)

σ(x, x′)
3

2

, (3.14)

where we have assumed that σ(x, x′) > 0, omitted the ǫ → 0, and the biscalar

U(x, x′) is to be determined using the fact that GH(x, x
′) is a solution of the inho-

mogeneous scalar field equation (2.3). The parametrix (3.14) has the same general

form as that for a neutral scalar field in five dimensions [40], but the biscalar U(x, x′)

will be different for a charged scalar field compared with the neutral case.

First we consider the expression (3.14) in normal coordinates at the fixed space-

time point x. For x′ sufficiently close to x, in this coordinate system the principal

part of the second order differential operator appearing in (2.3) reduces to ∂µ∂
µ

plus terms proportional to the square of the coordinate separation of the points.

Therefore, to leading order in the coordinate separation, the singular part of the

Feynman Green’s function (3.14) must match the leading order divergence of the

Minkowski space-time Feynman Green’s function (3.5), so that

lim
x′→x

U(x, x′) = 1. (3.15)

In particular, the biscalar U(x, x′) is regular in the coincidence limit.

The differential equation satisfied by U(x, x′) is derived by substituting (3.14)

into (2.3), assuming that σ(x, x′) > 0, which gives

0 =
1

σ
3

2

{[
DµD

µ −m2 − ξR
]
U − 3

σ
(DµU)σ;µ − 3

2σ
U∇µ∇µσ +

15

4σ2
Uσ;µσ

;µ

}

=
1

σ
3

2

{[
DµD

µ −m2 − ξR
]
U − 3

σ
(DµU)σ;µ +

3U

σ
∆− 1

2∆
1

2

;µσ
;µ

}
, (3.16)

where in the second line we have simplified using (3.7, 3.9). Therefore the biscalar

U(x, x′) satisfies the homogeneous differential equation [24]

σ
[
DµD

µ −m2 − ξR
]
U − 3σ;µDµU + 3U∆− 1

2∆
1

2

;µσ
;µ = 0. (3.17)
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Following [46–49] we now write U(x, x′) as a power series in σ(x, x′) as follows:

U(x, x′) =

∞∑

n=0

Un(x, x
′)σn(x, x′), (3.18)

where the biscalars Un(x, x
′) are regular in the coincidence limit x′ → x and

U0(x, x) = 1. (3.19)

Substituting (3.18) into (3.17), we find

0 =

∞∑

n=0

{
σ
[
DµD

µ −m2 − ξR
]
Un + (2n− 3)σ;µDµUn + nUn∇µ∇µσ

+n(n− 4)Unσ
−1σ;µσ

;µ + 3Un∆
− 1

2∆
1

2

;µσ
;µ
}
σn

=

∞∑

n=0

{
σ
[
DµD

µ −m2 − ξR
]
Un + (2n− 3)σ;µDµUn + n(2n− 3)Un

+(3− 2n)Un∆
− 1

2∆
1

2

;µσ
;µ
}
σn, (3.20)

again using (3.7, 3.9). The zeroth order term gives the equation satisfied by U0(x, x
′),

namely [24]

σ;µDµU0 −∆− 1

2∆
1

2

;µσ
;µU0 = 0, (3.21a)

while setting the coefficient of σn for n > 0 to vanish gives

[
DµD

µ −m2 − ξR
]
Un−1 + (2n− 3)

[
σ;µDµ + n−∆− 1

2∆
1

2

;µσ
;µ
]
Un = 0. (3.21b)

If we consider a neutral scalar field, the covariant derivatives Dµ in (3.21) reduce to

∇µ, yielding the equations for Un given in [40]. In particular, the equation (3.21a)

for U0(x, x
′) takes the form

σ;µ∇µU0 −∆− 1

2∆
1

2

;µσ
;µU0 = 0, (3.22)

which has the solution U0(x, x
′) = ∆

1

2 (x, x′) for a neutral scalar field. For a charged

scalar field, all the coefficients Un(x, x
′) (including U0(x, x

′)) will depend on the

electromagnetic potential Aµ as well as geometric quantities.

4. Covariant series expansion of the Hadamard coefficients

In this section we consider in detail the covariant series expansions of the

Hadamard coefficients Un(x, x
′). Since the leading order divergence of the Hadamard

parametrix (3.14) is O(σ− 3

2 ), the computation of the renormalized scalar field con-

densate requires U(x, x′) to be known up to order O(σ
3

2 ). Finding the renormalized

current (2.7) involves taking one derivative of the Feynman Green’s function and
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hence requires knowledge of U(x, x′) up to O(σ2), while the renormalized stress-

energy tensor (2.8) involves two derivatives and therefore U(x, x′) to order O(σ
5

2 ).

We thus consider the following expansions:

U0(x, x
′) = U00 + U01µσ

;µ + U02µνσ
;µσ;ν + U03µνλσ

;µσ;νσ;λ + U04µνλτσ
;µσ;νσ;λσ;τ

+U05µνλτρσ
;µσ;νσ;λσ;τσ;ρ + . . . (4.1a)

U1(x, x
′) = U10 + U11µσ

;µ + U12µνσ
;µσ;ν + U13µνλσ

;µσ;νσ;λ + . . . (4.1b)

U2(x, x
′) = U20 + U21µσ

;µ + . . . (4.1c)

The coefficients U00, U01µ, etc. all depend only on the space-time point x and are

symmetric tensors. To find these coefficients, we substitute the expansions (4.1)

into the equations (3.21) and compare term-by-term. In this section we include

more steps in the derivation than presented in our earlier work [24], since these may

be useful for researchers wishing to perform similar calculations.

The coefficients in the expansions (4.1) typically contain three types of terms:

(1) expressions involving the metric and curvature tensors only,

(2) expressions involving only the electromagnetic potential and gauge field

strength and their derivatives,

(3) expressions involving both curvature tensors and gauge field quantities.

In the absence of the scalar field charge, only terms of type (1) remain and these

can be found in [40]. In Minkowski space-time, most terms of type (1) and all terms

of type (3) vanish identically, leaving just a few quantities depending on the scalar

field mass m and terms of type (2).

A major challenge in the calculations whose results we report in this section

is simplifying the expressions to give as compact a form as possible. Our general

simplification strategy is to combine similar terms as far as possible, if necessary

changing the order in which covariant derivatives are taken, and exploiting the

symmetry of the tensors. To this end, we first note that the electromagnetic field

strength Fµν is an antisymmetric tensor given by

Fµν = DµAν −DνAµ, (4.2)

and we will find the following identities (and their derivatives) to be very useful:

[DµDν −DνDµ]Aρ = RαρνµAα − iqAρFµν , (4.3a)

[DµDνDλ −DνDµDλ]Aρ = RαλνµDαAρ +RαρνµDλAα − iqFµνDλAρ.

(4.3b)

Due to the antisymmetry of Fµν , and the symmetry of the Ricci tensor Rµν , we

also have the identity

∇µ∇νFµν = 0. (4.4)

It is worth noting that the covariant derivatives Dµ do not commute even in

Minkowski space-time, due to the electromagnetic field. From the identities (4.3),



14 Balakumar and Winstanley

it can be seen that changing the orders of derivatives invariably introduces terms of

type (3). The number of such terms increases rapidly as the order of the expansion

increases and the number of derivatives that need to be considered increases. We find

that the highest order terms in the expansions (4.1) of U1 and U2, namely U13µνλ

and U21µ, contain many terms of type (3). Since these lengthy expressions are not

particularly informative, for reasons of space we present expressions for U13µνλ and

U21µ only in Minkowski space-time, but for a general background electromagnetic

potential Aµ. The expressions we give for all other terms in the expansions (4.1)

will be valid for arbitrary Aµ and space-time metric gµν .

4.1. U0

First we find U0 by solving (3.21a). This equation is identical to that satisfied by

U0 in any number of space-time dimensions greater than or equal to three [24].

In [24], this equation was solved up to order O(σ2) in four space-time dimensions,

but since we are working here in five dimensions, we require U0 to order O(σ
5

2 ). In

this section we provide more details of the calculation in [24], as well as extending

it to the required higher order.

The equation (3.21a) involves only one derivative of U0, which is given by

DαU0 = DαU00 + (DαU01µ)σ
;µ + gµβU01µσ;βα + (DαU02µν)σ

;µσ;ν

+2gµβU02µνσ;βασ
;ν + (DαU03µνλ)σ

;µσ;νσ;λ + 3gµβU03µνλσ;βασ
;νσ;λ

+(DαU04µνλτ )σ
;µσ;νσ;λσ;τ + 4gµβU04µνλτσ;βασ

;νσ;λσ;τ

+(DαU05µνλτρ)σ
;µσ;νσ;λσ;τσ;ρ + 5gµβU05µνλτρσ;βασ

;νσ;λσ;τσ;ρ + . . . ,

(4.5)

where we have made use of the fact that the expansion coefficients are symmetric

tensors. This expression can be simplified using (3.13a), and we retain terms up to

O(σ2):

DαU0 = [U01α +DαU00] + [2U02αµ +DαU01µ]σ
;µ

+

[
3U03αµν +DαU02µν −

1

3
U01ρR

ρ
µαν

]
σ;µσ;ν

+

[
4U04αµνλ +DαU03µνλ −

2

3
U02ρλR

ρ
µαν +

1

12
U01ρR

ρ
µαν;λ

]
σ;µσ;νσ;λ

+

[
5U05αµνλτ +DαU04µνλτ − U03ρλτR

ρ
µαν +

1

6
U02ρτR

ρ
µαν;λ

−U01ρ

(
1

60
Rρµαν;λτ +

1

45
RρµκνR

κ
λατ

)]
σ;µσ;νσ;λσ;τ + . . . (4.6)

We now substitute DαU0 into (3.21a) and set the coefficients of the resulting co-

variant series expansion to zero. When we multiply DαU0 by σ;α, all the terms in

(4.6) involving the Riemann tensor disappear since the latter is antisymmetric in its

last two indices. The other term in (3.21a) involves ∆− 1

2∆
1

2

;µσ
;µ, whose expansion
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is given in (3.13c). Multiplying this by the expansion for U0 (4.1a) gives a covariant

Taylor series whose lowest term is O(σ). We therefore obtain the following simplified

set of equations

0 = U01α +DαU00, (4.7a)

0 = 2U02αµ +D(αU01µ) −
1

6
RαµU00, (4.7b)

0 = 3U03αµν +D(αU02µν) −
1

6
R(αµU01ν) +

1

24
R(αµ;ν)U00, (4.7c)

0 = 4U04αµνλ +D(αU03µνλ) −
1

6
R(αµU02νλ) +

1

24
R(αµ;νU01λ)

− 1

120
R(αµ;νλ)U00 −

1

90
Rρ(α|κ|µR

κ
ν|ρ|λ)U00, (4.7d)

0 = 5U05αµνλτ +D(αU04µνλτ) −
1

6
R(αµU03νλτ) +

1

24
R(αµ;νU02λτ)

− 1

120
R(αµ;νλU01τ) −

1

90
Rρ(α|κ|µR

κ
ν|ρ|λU01τ)

+
1

720
R(αµ;νλτ)U00 +

1

120
Rρ(α|κ|µR

κ
ν|ρ|λ;τ)U00, (4.7e)

where we have used the fact that U02µν , U03µνλ, . . . are symmetric tensors. The

terms in the equations (4.7) involving curvature tensors arise from the expression

∆− 1

2∆
1

2

;µσ
;µU0 in (3.21a), with the remainder coming from σ;µDµU0.

The equations (4.7) can be solved iteratively. First of all, the boundary condition

(3.19) gives

U00 = 1. (4.8a)

Substituting this into the first of our set of equations (4.7a) straightforwardly yields

U01µ = −∇µU00 + iqAµU00 = iqAµ. (4.8b)

Substituting for U01µ in (4.7b) then gives

U02µν =
1

12
RµνU00 −

1

2
D(µU01ν) =

1

12
Rµν −

iq

2
D(µAν). (4.8c)

Proceeding in a similar way, the expressions become increasingly complicated. After
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further simplifications, we find the following results:

U03µνλ = − 1

24
R(µν;λ) +

iq

6
D(µDνAλ) +

iq

12
A(µRνλ), (4.8d)

U04µνλτ =
1

80
R(µν;λτ) +

1

360
Rρ(µ|κ|νR

κ
λ|ρ|τ) +

1

288
R(µνRλτ)

− iq

24
D(µDνDλAτ) −

iq

24
D(µ

[
AνRλτ)

]
, (4.8e)

U05µνλτρ = − 1

360
R(µν;λτρ) −

1

288
R(µνRλτ ;ρ) −

1

360
Rκ(µ|ψ|νR

ψ
λ|κ|τ ;ρ)

+
iq

120
D(µDνDλDτAρ) +

iq

96
D(µDν

[
AλRτρ)

]

+
iq

288
R(µνDλDτAρ) +

iq

480
A(µRνλ;τρ) +

iq

288
A(µRνλRτρ)

+
iq

360
A(µR

κ
ν|ψ|λR

ψ
τ |κ|ρ). (4.8f)

It can be seen that the complexity of the expressions increases substantially as the

order of the expansion increases. We have been able to find the expansion coefficients

in U0 in a comparatively neat form in terms of the gauge covariant derivative of the

electromagnetic potential Aµ. As expected, the first five terms in (4.8) are identical

to those given in [24] in four space-time dimensions.

Since the electromagnetic potential does not affect the principal part of the par-

tial differential operator in the inhomogeneous scalar field equation (2.3), it also

does not affect the leading order terms in U(x, x′), and makes its first appearance

at O(σ
1

2 ) in U0. We see that U0 depends on the space-time curvature and back-

ground electromagnetic potential, but does not depend on the scalar field mass m

or coupling ξ to the curvature scalar.

If q = 0, then the expressions (4.8) reduce to those for a neutral scalar field

in five space-time dimensions given in [40]. In this case U0 = ∆
1

2 , as can be seen

by comparing the expansions (3.13b) and (4.8). For a charged scalar field on a

Minkowski space-time background, all terms in (4.8) which involve curvature tensors

vanish identically, and we are left with

UM
0 = 1 + iq

[
Aµσ

;µ − 1

2
D(µAν)σ

;µσ;ν +
1

6
D(µDνAλ)σ

;µσ;νσ;λ

− 1

24
D(µDνDλAτ)σ

;µσ;νσ;λσ;τ +
1

120
D(µDνDλDτAρ)σ

;µσ;νσ;λσ;τσ;ρ + . . .

]
.

(4.9)

The background electromagnetic potential has clearly broken the maximal symme-

try of the underlying Minkowski space-time, and UM
0 depends on the direction in

which the space-time points x, x′ are separated.
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4.2. U1

The equation (3.21b) satisfied by U1 is

[
DµD

µ −m2 − ξR
]
U0 −

[
σ;µDµ + 1−∆− 1

2∆
1

2

;µσ
;µ
]
U1 = 0. (4.10)

Although this equation is more complicated than that for U0 (3.21a), we only re-

quire U1 to order O(σ
3

2 ). In four space-time dimensions, the Hadamard parametrix

involves terms proportion to lnσ, which are multiplied by a biscalar V (x, x′) =

V0(x, x
′) + V1(x, x

′)σ + . . .. The equation (4.10) is similar in form (but with differ-

ent numerical coefficients) to that satisfied by the Hadamard coefficient V0 in four

space-time dimensions [24]. We therefore expect that our solution for U1 here will

feature some terms similar to those arising in V0, which was calculated to order

O(σ) in [24].

Before we can solve (4.10), we require a compact expression for DαDαU0. This

is a rather lengthy calculation, but can be simplified by first writing U0 as [24]

U0 = ∆
1

2 + Ũ0, (4.11)

where Ũ0 vanishes when q = 0. Using the linearity of the covariant derivative, we

then have

DαU0 = ∆
1

2

;α − iqAα∆
1

2 +DαŨ0, (4.12)

where the expansion of ∆
1

2

;α to the required order can be found in (3.13e). Since we

have found U0 to order O(σ
5

2 ), we can compute DαU0 to order O(σ2). The quantity

DαŨ0 has the form (4.6) but with the coefficients U01µ,. . . replaced by Ũ01µ, . . . .

This gives

DαŨ0 = U00α + U01αµσ
;µ + U02αµνσ

;µν + U03αµνλσ
;µσ;νσ;λ + U04αµνλτσ

;µσ;νσ;λσ;τ

+ . . . , (4.13)

where the first few terms in the expansion are

U00α = iqAα, (4.14a)

U01αµ =
iq

2
Fαµ, (4.14b)

U02αµν =
iq

6
∇(µFν)α +

iq

4
A(αRµν) +

q2

2
A(µFν)α, (4.14c)

U03αµνλ = − iq

24
∇(µ∇νFλ)α − q2

6
A(µ∇νFλ)α +

iq

24
Fα(µRνλ) +

q2

4
Fα(µDνAλ)

− iq

24
Rρ(µ|α|νFλ)ρ −

iq

12
Rα(µDνAλ) −

iq

12
Rα(µ;νAλ) +

iq

24
A(µRνλ);α

− iq

24
R(µν;λ)Aα. (4.14d)

The expression for U04αµνλτ contains many terms, so we do not reproduce it here

in its entirety. Most of these terms involve combinations of curvature tensors with
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either the electromagnetic potential or gauge field strength. In Minkowski space-

time, these terms all vanish identically and U04αµνλτ reduces to

U
M
04αµνλτ =

iq

120
∇(µ∇ν∇λFτ)α +

q2

24
A(µ∇ν∇λFτ)α − q2

12
Fα(µDνDλAτ)

+
q2

12

(
D(µAν

)
∇λFτ)α. (4.15)

The expansion coefficients U01αµ, U02αµν , etc. are symmetric in the indices µ, ν,

etc. but the index α is not included in the symmetrization. The expressions (4.14) in-

volve curvature tensors, the electromagnetic potential Aµ and also the field strength

Fµν . The most compact expressions we have been able to find involve gauge covari-

ant derivatives Dµ acting on the electromagnetic potential Aµ and space-time co-

variant derivatives ∇µ acting on the electromagnetic field strength Fµν . The expan-

sion coefficients (4.14) simplify greatly in Minkowski space-time, when all curvature

tensors vanish, and we are left with

DαU
M
0 =

iq

2
Fαµσ

;µ +

[
iq

6
∇(µFν)α +

q2

2
A(µFν)α

]
σ;µσ;ν

+

[
− iq

24
∇(µ∇νFλ)α − q2

6
A(µ∇νFλ)α +

q2

4
Fα(µDνAλ)

]
σ;µσ;νσ;λ

+

[
iq

120
∇(µ∇ν∇λFτ)α +

q2

24
A(µ∇ν∇λFτ)α − q2

12
Fα(µDνDλAτ)

+
q2

12

[
D(µAν

]
∇λFτ)α

]
σ;µσ;νσ;λσ;τ + . . . (4.16)

Note that the lowest-order terms coming from −iq∆
1

2 and DαŨ0 have cancelled.

To find DαDαU0, we take the derivative of (4.12), yielding

DαDαU0 = DαDα∆
1

2 +DαDαŨ0

= �∆
1

2 − 2iqAα∆
1

2

;α − iq∆
1

2DαAα +DαDαŨ0. (4.17)

We require this to order O(σ
3

2 ). The first three terms in (4.17) can be easily found

using the expansions (3.13b, 3.13d, 3.13e), giving

�∆
1

2 −2iqAα∆
1

2

;α− iq∆
1

2DαAα = D0+D1µσ
;µ+D2µνσ

;µσ;ν +D3µνλσ
;µσ;νσ;λ+ . . .

(4.18)
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where

D0 =
1

6
R− iqDαAα, (4.19a)

D1µ = − iq

3
AαRαµ, (4.19b)

D2µν =
1

40
�Rµν −

1

120
R;µν +

1

72
RRµν −

1

30
RρµRρν +

1

60
RρτRρµτν

+
1

60
RρκτµRρκτν −

iq

12
AαRµν;α +

iq

6
AαRα(µ;ν) −

iq

12
RµνD

αAα,

(4.19c)

D3µνλ =
1

360
R;(µνλ) −

1

120

[
�R(µν

]
;λ)

− 1

144
RR(µν;λ) +

1

45
Rρ(µR|ρ|ν;λ)

− 1

180
Rρτ ;(µR

τ
ν|ρ|λ) −

1

180
RρτR

τ
(µ|ρ|ν;λ) −

1

90
Rρκτ (µR|ρκτ |ν;λ)

− iq

20
AαRα(µ;νλ) +

iq

30
AαR(µν;|α|λ) −

iq

36
AαRα(µRνλ)

− iq

45
AαRρατ(µR

τ
ν|ρ|λ) +

iq

180
AαRρ(µR

ρ
νλ)α +

iq

24
R(µν;λ)D

αAα.

(4.19d)

In Minkowski spacetime, the quantities ∆
1

2

M;µ (3.13e) and �∆
1

2

M (3.13d) vanish iden-

tically, we have ∆
1

2

M = 1 and (4.18) simplifies to

DαDα∆
1

2

M = �∆
1

2

M − 2iqAα∆
1

2

M;α − iq∆
1

2

MDαAα = −iqDαAα. (4.20)

This is an exact expression in Minkowski space-time and is nonzero because we are

considering gauge covariant derivatives.

This leaves DαDαŨ0 to be computed. Taking the covariant derivative of DαŨ0

(4.13) and using the expansion (3.13a), we find

DαD
αŨ0 = U00 + U01µσ

;µ + U02µνσ
;µσ;ν + U03µνλσ

;µσ;νσ;λ + . . . (4.21)

where the coefficients U0, U01µ, . . . , are given by

U00 = gαβU01αβ +Dα
U00α, (4.22a)

U01µ = 2gαβU02αβµ +Dα
U01αµ, (4.22b)

U02µν = 3gαβU03αβµν +Dα
U02αµν −

1

3
Rαµ

β
νU01αβ , (4.22c)

U03µνλ = 4gαβU04αβµνλ +Dα
U03αµνλ −

2

3
Rαµ

β
νU02αβλ +

1

12
Rαµ

β
ν;λU01αβ .

(4.22d)

Substituting in from (4.14), and simplifying, we find that the first three terms in
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the expansion (4.21) are

U00 = iqDµAµ, (4.23a)

U01µ =
iq

3

[
AαRαµ +

1

2
RAµ +∇αFαµ

]
, (4.23b)

U02µν =
iq

12
RµνDαA

α − iq

12
RD(µAν) +

iq

12
AαRµν;α − iq

6
AαRα(µ;ν)

+
q2

4
FαµFνα +

iq

12
∇α∇(µFν)α +

q2

3
A(µ∇αFν)α − iq

12
Rα(µFν)α.

(4.23c)

Again we do not give explicitly the rather lengthy expression for U03µνλ, except in

the particular case of Minkowkski space-time, when all the curvature tensors vanish

identically, and we have the simplified result

UM
03µνλ = − iq

60
∇α∇(µ∇νFλ)α − q2

12
A(µ∇α∇νFλ)α − q2

6

[
D(µAν

]
∇αFλ)α

−q2

6
Fα(µ∇νFλ)α − iq3

4
Fα(µF

α
νAλ). (4.24)

In Minkowski space-time, the earlier terms in the expansion (4.23) also simplify and

we find

DαDαU
M
0 =

iq

3
[∇αFαµ]σ

;µ

+

[
q2

4
FαµFνα +

iq

12
∇α∇(µFν)α +

q2

3
A(µ∇αFν)α

]
σ;µσ;ν

+

[
− iq

60
∇α∇(µ∇νFλ)α − q2

12
A(µ∇α∇νFλ)α − q2

6

[
D(µAν

]
∇αFλ)α

−q2

6
Fα(µ∇νFλ)α − iq3

4
Fα(µF

α
νAλ)

]
σ;µσ;νσ;λ . . . . (4.25)

In this case the zeroth order terms arising from (4.20, 4.23a) have cancelled, leaving

DαDαU
M
0 to be O(σ

1

2 ).

We now have all the ingredients needed to solve (4.10). The quantity DαU1 has

a similar form to (4.6), but with the U0 coefficients replaced by U1 coefficients.

The method is then similar to that used to find the expansion of U0. Setting the

coefficients of the series expansion resulting from (4.10) to zero, we obtain the

equations

0 = U10 −D0 − U00 +
(
m2 + ξR

)
U00, (4.26a)

0 = 2U11α +DαU10 −D1α − U01α +
(
m2 + ξR

)
U01α, (4.26b)

0 = 3U12αµ +D(αU11µ) −
1

6
RµαU10 −D2αµ − U02αµ +

(
m2 + ξR

)
U02αµ,

(4.26c)

0 = 4U13αµν +D(αU12µν) −
1

6
R(µαU11ν) +

1

24
R(µν;α)U10 −D3αµν − U03αµν

+
(
m2 + ξR

)
U03αµν . (4.26d)
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We now proceed as we did for U0 and solve the equations (4.26) iteratively. The

first equation (4.26a) is straightforward to solve:

U10 = D0 + U00 −
(
m2 + ξR

)
U00 = −

[
m2 +

(
ξ − 1

6

)
R

]
. (4.27a)

Therefore U10 does not receive any contributions from the electromagnetic field,

but does depend on the scalar field mass m and the coupling ξ of the scalar field to

the curvature scalar R. This behaviour is shared with the zeroth order term in the

covariant series expansion of V0 in four space-time dimensions [24].

Next, we have

U11µ = −1

2

[
DαU10 −D01α − U01α +

(
m2 + ξR

)
U01α

]

=
1

2

(
ξ − 1

6

)
R;µ − iq

[
m2 +

(
ξ − 1

6

)
R

]
Aµ +

iq

6
∇αFαµ. (4.27b)

Corrections due to the electromagnetic potential have arisen at this order. Contin-

uing to (4.26c), after some algebra we find

U12µν = −1

6
m2Rµν −

1

3

(
ξ − 3

20

)
R;µν +

1

60
�Rµν −

1

6

(
ξ − 1

6

)
RRµν

− 1

45
RαµRαν +

1

90
RαβRαµβν +

1

90
RαβγµRαβγν

+
iq

2

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

iq

2

(
ξ − 1

6

)
A(µR;ν)

+
q2

12
FαµFνα +

q2

6
A(µ∇αFν)α +

iq

12
∇(µ∇αFν)α. (4.27c)

This coefficient is considerably more complicated than the previous two, and involves

coupling between the electromagnetic potential and curvature tensors, as well as

higher-order derivatives of the electromagnetic field.

As anticipated from our calculations of U04αµνλ and U03αµν , we find that U13µνλ

involves many complicated terms coupling electromagnetic field quantities and cur-

vature tensors. We therefore restrict ourselves to giving the form of U13µνλ in

Minkowski space-time, which is

UM
13µνλ = − iqm2

6
D(µDνAλ) −

iq

40
∇α∇(µ∇νFλ)α − q2

12

[
D(µAν

]
∇αFλ)α

+
iq3

12
A(µF

α
νFλ)α − q2

12
Fα(µ∇νFλ)α − q2

12
A(µ∇α∇νFλ)α. (4.28)

The lower-order terms in the expansion (4.27) also simplify in Minkowski space-
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time, to yield

UM
1 = −m2 +

[
−iqm2Aµ +

iq

6
∇αFαµ

]
σ;µ

+

[
iq

2
m2D(µAν) +

q2

12
FαµFνα +

q2

6
A(µ∇αFν)α +

iq

12
∇(µ∇αFν)α

]
σ;µσ;ν

+

[
− iqm2

6
D(µDνAλ) −

iq

40
∇α∇(µ∇νFλ)α − q2

12

[
D(µAν

]
∇αFλ)α

+
iq3

12
A(µF

α
νFλ)α − q2

12
Fα(µ∇νFλ)α − q2

12
A(µ∇α∇νFλ)α

]
σ;µσ;νσ;λ + . . .

(4.29)

Even in Minkowski space-time, the expression (4.29) for UM
1 is considerably more

complicated than the corresponding expression (4.9) for UM
0 . It depends on the

scalar field mass as well as the electromagnetic potential and is nonzero if the scalar

field is neutral. If we consider a massless charged scalar field, the zeroth order term

in UM
1 vanishes and UM

1 is order O(σ
1

2 ).

4.3. U2

U2 satisfies the equation

[
DµD

µ −m2 − ξR
]
U1 +

[
σ;µDµ + 2−∆− 1

2∆
1

2

;µσ
;µ
]
U2 = 0. (4.30)

This is similar in structure to the equation (4.10) for U1, but we only need to

find U2 to order O(σ
1

2 ). Equation (4.30) is also similar in form (but with different

numerical coefficients) to the equation governing the coefficient V1 in four space-

time dimensions [24], although there we solved the corresponding equation only to

leading order.

Our method follows that for finding U1 in section 4.2, with our first aim to find

an expression for DαDαU1 in as compact a form as possible. We begin by writing

DαU1 as

DαU1 = U10α + U11αµσ
;µ + U12αµνσ

;µσ;ν + . . . (4.31)

The coefficients in this expansion are found using an analogous expression to (4.6),

with the U0 coefficients replaced by U1 coefficients. The first two terms in (4.31)
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are

U10α = −1

2

(
ξ − 1

6

)
R;α +

iq

6
∇ρFρα, (4.32a)

U11αµ = −m2

6
Rαµ +

1

6

(
ξ − 1

5

)
R;αµ +

1

60
�Rαµ

−1

6

(
ξ − 1

6

)
RRαµ − 1

45
RραRρµ +

1

90
RρτRρατµ +

1

90
RρτκαRρτκµ

− iq

2

(
ξ − 1

6

)
AµR;α +

q2

6
F ραFµρ −

iq

2

[
m2 +

(
ξ − 1

6

)
R

]
Fαµ

+
q2

6
Aµ∇ρFαρ +

iq

12
∇µ∇ρFαρ −

iq

12
∇α∇ρFµρ. (4.32b)

As anticipated, these expressions involve combinations of curvature tensors, the

electromagnetic potential, the gauge field strength and their derivatives.

Since U12αµν involves U13µνλ, we give its (lengthy) form only in Minkowski

space-time:

U
M
12αµν = − iqm2

6
∇(µFν)α +

q2m2

2
Fα(µAν) −

iq

40
∇ρ∇(µ∇ν)Fαρ +

iq

30
∇ρ∇α∇(µFν)ρ

− q2

12
A(µ∇ρ∇ν)Fαρ +

q2

12
A(µ∇|α|∇ρFµ)ρ −

q2

12

[
D(µAν)

]
∇ρFαρ

− q2

12
F ρα∇(µFν)ρ −

q2

12
F ρ(µ∇ν)Fαρ +

q2

12
F ρ(µ∇|α|Fν)ρ +

q2

12
Fα(µ∇ρFν)ρ

+
iq3

6
A(µF

ρ
ν)Fαρ. (4.33)

On Minkowski space-time, the lower-order terms (4.32) simplify and we have

DαU
M
1 =

iq

6
∇ρFρα +

[
q2

6
F ραFµρ −

iqm2

2
Fαµ +

q2

6
Aµ∇ρFαρ +

iq

12
∇µ∇ρFαρ

− iq

12
∇α∇ρFµρ

]
σ;µ

+

[
− iqm2

6
∇(µFν)α +

q2m2

2
Fα(µAν) −

iq

40
∇ρ∇(µ∇ν)Fαρ

+
iq

30
∇ρ∇α∇(µFν)ρ −

q2

12
A(µ∇ρ∇ν)Fαρ +

q2

12
A(µ∇|α|∇ρFµ)ρ

− q2

12

[
D(µAν)

]
∇ρFαρ −

q2

12
F ρα∇(µFν)ρ −

q2

12
F ρ(µ∇ν)Fαρ

+
q2

12
F ρ(µ∇|α|Fν)ρ +

q2

12
Fα(µ∇ρFν)ρ +

iq3

6
A(µF

ρ
ν)Fαρ

]
σ;µσ;νσ;λ

+ . . . (4.34)

Unlike the situation for DαU
M
0 (4.16), in DαU

M
1 the zeroth order term is nonzero

and depends on the divergence of the gauge field strength.
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The next step is to find DαD
αU1, which we write, to the order required, as

DαD
αU1 = U10 + U11µσ

;µ + . . . (4.35)

The lowest order term U10 is straightforward to find:

U10 = gαβU11αβ +Dα
U10α

=
1

90
RαβγδRαβγδ −

1

90
RαβRαβ − 1

3

(
ξ − 1

5

)
�R− 1

6

[
m2 +

(
ξ − 1

6

)
R

]
R

−q2

6
FαβFαβ . (4.36)

We see that there is just a single term arising from the contribution of the elec-

tromagnetic field. As previously, we do not give the expression for the higher order

term U11µ on a general space-time background. On Minkowski space-time, it takes

the form:

UM
11µ =

iqm2

3
∇αFµα − iq

20
�∇αFµα +

q2

6
Fαβ∇αFµβ − iq3

6
AµF

αβFαβ . (4.37)

Most of the terms in U10 (4.36) also vanish in Minkowski space-time, giving

DαDαU
M
1 = −q2

6
FαβFαβ +

[
iqm2

3
∇αFµα − iq

20
�∇αFµα +

q2

6
Fαβ∇αFµβ

− iq3

6
AµF

αβFαβ

]
σ;µ + . . . . (4.38)

This is a comparatively compact expression, particularly given the complexity of

UM
1 (4.29).

We can now solve (4.30) iteratively to obtain the expansion coefficients in U2.

Substituting in the expansion for U2 (4.1c), we obtain the equations

0 = 2U20 + U10 −
(
m2 + ξR

)
U10, (4.39a)

0 = 3U21α +DαU20 + U11α −
(
m2 + ξR

)
U11α. (4.39b)

The first can be straightforwardly solved for a general space-time background to

give

U20 = −1

2

[
m2 +

(
ξ − 1

6

)
R

]2
+

1

6

(
ξ − 1

5

)
�R+

1

180
RαβRαβ

− 1

180
RαβγδRαβγδ +

q2

12
FαβF

αβ . (4.40)

We find a single additional term due to the electromagnetic field, which is nonzero

even in Minkowski space-time. A similar term (but with a different numerical coef-

ficient) also arises in the zeroth order contribution to V1 in four space-time dimen-

sions [24]. In that situation this term plays an important role in contributing to the

trace anomaly [24]. Here we are working in five space-time dimensions, so there is

no trace anomaly [40].
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We present the form of U12α valid on Minkowski space-time only:

UM
21µ = − iqm4

2
Aµ − iqm2

6
∇αFµα +

iq

60
�∇αFµα − q2

12
Fαβ∇µFαβ +

iq3

12
AµF

αβFαβ .

(4.41)

Together with the simplified expression for U20 (4.40) in Minkowski space-time, we

find

UM
2 =

q2

12
FαβF

αβ +

[
− iqm4

2
Aµ − iqm2

6
∇αFµα +

iq

60
�∇αFµα − q2

12
Fαβ∇µFαβ

+
iq3

12
AµF

αβFαβ

]
σ;µ + . . . . (4.42)

The zeroth order term in UM
2 is nonzero even if the scalar field is massless, in

contrast to UM
1 (4.29).

5. Conclusions

In this article we have derived the Hadamard parametrix for the Feynman Green’s

function of a massive, charged, complex scalar field on a five-dimensional curved

space-time. We have presented explicit expressions for covariant Taylor series ex-

pansions to sufficiently high order as required for the computation of the renormal-

ized current on a general space-time background, and the renormalized stress-energy

tensor on Minkowski space-time. We make no assumptions about either the back-

ground metric or electromagnetic potential. In particular, we do not assume any

form of the field equations, although our expressions would simplify if, for exam-

ple, it is assumed that both Einstein’s and Maxwell’s equations are satisfied by the

background quantities.

This work generalizes previous results for the Hadamard parametrix for a neu-

tral scalar field in four [50–55] and higher dimensions [40], and the covariant Taylor

series expansions for a charged scalar field in two, three and four dimensions given

in [24]. These results will be useful for the computation of renormalized expectation

values for a charged scalar field on a curved space-time background. For example, the

renormalized scalar field condensate for a neutral scalar field on a five-dimensional

Schwarzschild-Tangherlini black hole was computed in [56], and it would be inter-

esting to investigate the effect of both black hole and scalar field charge on this

quantity.

Using the Hadamard parametrix to regularize the Feynman Green’s function for

a charged scalar field is not the only approach to the renormalization of expectation

values of observables. Previous work studying the Green’s function for a charged

scalar field on four space-time dimensions considered the DeWitt-Schwinger repre-

sentation of the Feynman Green’s function [57, 58]. For a neutral scalar field, it is

known that the singular part of the DeWitt-Schwinger representation of the Feyn-

man Green’s function is the same as that given by the Hadamard parametrix [46]

and we anticipate that the same is true for a charged scalar field.
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The work of [24, 57, 58], as here, is applicable to any space-time geometry and

background electromagnetic potential. For particular space-times, other methods

of renormalization are available. For example, for a Friedman-Lemâıtre-Robertson-

Walker space-time, adiabatic regularization can be used to find renormalized ex-

pectation values for the adiabatic vacuum state. This approach has been applied to

a charged scalar field in two [25] and four [26] dimensions. If one considers a neu-

tral scalar field, then adiabatic regularization is equivalent to DeWitt-Schwinger

(and hence Hadamard) renormalization [59, 60]. Since the calculations involved in

showing this are extremely lengthy, even for a neutral scalar field, we leave the

interesting question of the equivalence of adiabatic and Hadamard renormalization

for a charged scalar field to future work.
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for warm and generous hospitality. The work of E.W. is also supported by the

Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC

grant ST/P000800/1.

References

1. C. Kiefer, Annalen Phys. 15, 129–148 (2005).
2. B. S. DeWitt, Phys. Rept. 19, 295–357 (1975).
3. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge: Cam-

bridge University Press) (1984).
4. S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-time (Cam-

bridge: Cambridge University Press) (1989).
5. R. M. Wald, Quantum Field Theory in Curved Space-time and Black Hole Thermo-

dynamics (Chicago: University of Chicago Press) (1995).
6. L. E. Parker and D. Toms, Quantum Field Theory in Curved Spacetime : Quantized

Fields and Gravity (Cambridge: Cambridge University Press) (2009).
7. L. Parker, Phys. Rev. Lett. 21, 562–564 (1968).
8. L. Parker, Phys. Rev. 183, 1057–1068 (1969).
9. L. Parker, Phys. Rev. D3, 346–356 (1971).

10. S. A. Fulling, Phys. Rev. D7, 2850–2862 (1973).
11. P. C. W. Davies, J. Phys. A8, 609–616 (1975).
12. W. G. Unruh, Phys. Rev. D14, 870–892 (1976).
13. L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, Rev. Mod. Phys. 80, 787–838

(2008).
14. S. W. Hawking, Nature 248, 30–31 (1974).
15. S. W. Hawking, Commun. Math. Phys. 43, 199–220 (1975).
16. C. J. Fewster and R. Verch, Class. Quantum Grav. 30, 235027 (2013).



Hadamard parametrix of the Green’s function of a five-dimensional charged scalar field 27

17. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966–972
(1921) [Int. J. Mod. Phys. D27, 1870001 (2018)].

18. O. Klein, Z. Phys. 37, 895–906 (1926).
19. N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B429, 263–272 (1998).
20. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B436,

257–263 (1998).
21. N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Rev. D59, 086004 (1999).
22. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370–3373 (1999).
23. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690–4693 (1999).
24. V. Balakumar and E. Winstanley, Class. Quantum Grav. 37, 065004 (2020).
25. A. Ferreiro, J. Navarro-Salas and S. Pla, Phys. Rev. D98, 045015 (2018).
26. A. Ferreiro and J. Navarro-Salas, Phys. Rev. D97, 125012 (2018).
27. S. M. Christensen, Phys. Rev. D14, 2490–2501 (1976).
28. S. M. Christensen, Phys. Rev. D17, 946–963 (1978).
29. H.-H. Zhang, K.-X. Feng, S.-W. Qiu, A. Zhao and X.-S. Li, Chin. Phys. C34, 1576–

1582 (2010).
30. R. M. Wald, Commun. Math. Phys. 54, 1–19 (1977).
31. V. Moretti, Commun. Math. Phys. 201, 327–363 (1999).
32. V. Moretti, Commun. Math. Phys. 208, 283–309 (1999).
33. V. Moretti, J. Math. Phys. 40, 3843–3875 (1999).
34. V. Moretti, Commun. Math. Phys. 212, 165–189 (2000).
35. S. Hollands and R. M. Wald, Commun. Math. Phys. 223, 289–326 (2001).
36. S. Hollands and R. M. Wald, Commun. Math. Phys. 231, 309–345 (2002).
37. V. Moretti, Commun. Math. Phys. 232, 189–221 (2003).
38. S. Hollands and R. M. Wald, Commun. Math. Phys. 237, 123–160 (2003).
39. S. Hollands and R. M. Wald, Rev. Math. Phys. 17, 227–312 (2005).
40. Y. Decanini and A. Folacci, Phys. Rev. D78, 044025 (2008).
41. B. S. DeWitt, Dynamical Theory of Groups and Fields (New York: Gordon and

Breach) (1965).
42. M. Visser, Phys. Rev. D47, 2395–2402 (1993).
43. E. Poisson, A. Pound and I. Vega, Living Rev. Rel. 14, 7 (2011).
44. C. Kent and E. Winstanley, Phys. Rev. D91, 044044 (2015).
45. P. R. Anderson, W. A. Hiscock and D. A. Samuel, Phys. Rev. D51, 4337–4358 (1995).
46. Y. Decanini and A. Folacci, Phys. Rev. D73, 044027 (2006).
47. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations

(New Haven: Yale University Press) (1923).
48. P. R. Garabedian, Partial Differential Equations (New York: Wiley) (1964).
49. F. G. Friedlander, The Wave Equation on a Curved Space-time (Cambridge: Cam-

bridge University Press) (1975).
50. S. L. Adler, J. Lieberman and Y. J. Ng, Annals Phys. 106, 279–321 (1977).
51. R. M. Wald, Phys. Rev. D17, 1477–1484 (1978).
52. M. A. Castagnino and D. D. Harari, Annals Phys. 152, 85–104 (1984).
53. M. R. Brown and A. C. Ottewill, Phys. Rev. D34, 1776–1786 (1986).
54. D. Bernard and A. Folacci, Phys. Rev. D34, 2286–2291 (1986).
55. S. Tadaki, Prog. Theor. Phys. 77, 671–680 (1987).
56. P. Taylor and C. Breen, Phys. Rev. D94, 125024 (2016).
57. D.G. Boulware, NATO Sci. Ser. B44, 175–217 (1979).
58. R. Herman and W. A. Hiscock, Phys. Rev. D53, 3285–3295 (1996).
59. N. D. Birrell, Proc. Roy. Soc. Lond. B361, 513–526 (1978).
60. A. del Rio and J. Navarro-Salas, Phys. Rev. D91, 064031 (2015).


