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Abstract. The Hadamard représentation of the Green’s function of a quantum field
on a curved space-time is a powerfulitool for'cemputations of renormalized expectation
values. We study the Hadamard form of.the Feynman Green’s function for a massive
charged complex scalar field in an arbitrary number of space-time dimensions. Explicit
expressions for the coefficientsvin.the . Hadamard parametrix are given for two, three
and four space-time dimensions. We then develop the formalism for the Hadamard
renormalization of the expectation values of the scalar field condensate, current and
stress-energy tensor. These results will have applications in the computation of
renormalized expectation values for a charged quantum scalar field on a charged black
hole space-time, and henceinsaddressing issues such as the quantum stability of the
inner horizon.

PACS numbers: 04.62.-+v
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1. Introduction

The questafor a'theory of quantum gravity, in which both space-time and matter are
quantized, has yet to yield a definitive solution. In the absence of such a theory, a
semiclassicalszapproach, namely quantum field theory on curved space-time (QFTCS),
represents \a first step. In QFTCS, the space-time metric is treated classically, and
the preperties of quantum fields propagating on this classical background are studied.
Any successful theory of quantum gravity must reproduce the results of QFTCS in an
appropriate limit, and therefore QFTCS is a nontrivial testing-ground for theories of
quantum gravity. QFTCS has also resulted in many deep results in its own right, such as
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the discovery of Hawking radiation [1], the Unruh effect [2] and the creation of partieles
in an expanding universe [3-5] (see also [6-10] for reviews).

The renormalized expectation value of the stress-energy tensor (RSET) (Tju)ien
plays a central role in QFTCS. Via the semiclassical Einstein equations

G,uzx + Agpz/ - <T#u>ren (11)

(where G, is the Einstein tensor, A the cosmological constant, [g,, thé space-time
metric and we are using units in which 807G = ¢ = h = 1) the RSET<governs how
the quantum field will affect the space-time geometry. However, sineesthe stress-energy
tensor operator involves products of field operators evaluated at the same space-time
point, it is divergent and a naive computation of its expectation value will give an
infinite result. It is therefore necessary to employ some kind jof regularization and
renormalization prescription.

There are many possible approaches to renormalizing the RSET (see, for example,
[7,8,10]). Amongst these, the axiomatic approach.developed by Wald [9,11] has proved
to be extremely powerful. The stress-energy ténsor opeérator is regularized by point-
splitting [12-14], considering the field éoperators acting at two distinct, but closely
separated, space-time points. The divergences in the RSET arise in the limit in which
the space-time points are brought together. These divergences are purely geometric and
independent of the state of the quantum field. .\ The RSET is computed by subtracting
appropriate geometric divergent terms andithen taking the coincidence limit of the space-
time points. Wald [9, 11] haghgiven a list of physically-motivated axioms which must
be satisfied by the resulting RSETy and which determine the RSET up to the addition
of a local conserved tensor. Such a remormalization ambiguity is to be expected in the
absence of a full theory of quantum gravity and corresponds to the freedom to move
any local conserved tensor from the left-hand-side to the right-hand-side of (1.1).

The RSET can bescomputed by applying a second-order differential operator to
the Feynman Green’s function Gg(z,2’) of the quantum field. The Feynman Green’s
function depends en two space-time points x and z’, and is itself divergent in the
limit 2/ — x. The divergences in the RSET can therefore be identified from the
corresponding_divergenees in Gg(x,z’). In the original formulation of point-splitting
regularization [12-14], the parametrix giving the divergent terms in Gg(z,z’) was
constructed using aDeWitt-Schwinger expansion. This is a special case of the Hadamard
representation of Gr(z, z’) [15]. Wald showed that subtracting the divergent parts of the
Hadamard parametrix from Gg(x, 2), applying the appropriate second-order differential
operator and taking the coincidence limit yields an RSET which satisfies his axioms.
It has been rigorously established that the Hadamard approach yields valid results for
the renormalization stress-energy tensor, which are unique apart from the anticipated
freedom to add a local conserved tensor (see, for example, [16-24] and [25] for a more
comprehensive list of papers on Hadamard renormalization).

Hadamard renormalization following this approach has proved to be an elegant
method for computing the RSET and other expectation values. The Hadamard
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prescription has been developed in detail for a massive neutral scalar field with arbitrary
coupling to the curvature in any number of space-time dimensions [25]. Hadamard
renormalization has also been applied to the electromagnetic field [26], Stuckelberg
massive electromagnetic field [27], one-loop quantum gravity [28], p-forms [29] and
fermions [30-33].

In this paper we extend the Hadamard formalism to a massive charged complex
scalar field on a curved space-time with an arbitrary number of dimensions. Our
primary motivation is to develop the machinery necessary for the computation of the
RSET for a charged quantum scalar field on a charged Reissnet-Nordstrom black hole
background. Unlike the uncharged Schwarzschild black hole, ‘a Reigsner-Nordstrom
black hole possesses an inner (Cauchy) horizon as well as am_event horizon. The
inner horizon is classically unstable, with a weak singularity, forming as a result of the
backreaction of classical perturbations [34-43|. It is expected that there will also be a
quantum instability at the inner horizon, with a stronger singularity forming as a result
of divergences in quantum expectation values [44-47|. The, precise nature of quantum
effects on the classical instability remains an open question. Recently this has begun to
be studied in detail, as new techniques haye been developed for computing renormalized
expectation values inside the event horizon of a black hole [48,49]. An analysis of the
leading-order asymptotics of the RSET for, a massless, minimally coupled quantum
scalar field [50] in both the Hartle~Hawking,[51] ‘and Unruh [2] states found that the
divergence at the inner horizon is weaker than expected. Numerical computations of
the vacuum polarization (the,expectation value of the square of the quantum scalar
field) [52] reveal good agreemient with this asymptotic analysis. In the Hartle-Hawking
and Unruh states, two of the components of the RSET have recently been computed
on the inner horizon [53], indicating/that a curvature singularity forms at the inner
horizon due to the back-réaction, of the neutral scalar field. At the same time, it has
been shown that there exists a quantum state for which the RSET is regular at the
inner horizon [54] so the back-reaction in this case would not lead to the formation of a
singularity. All thisaecent work considers only a neutral scalar field, whereas it is the
presence of the classical electromagnetic field which leads to the inner horizon in the
first place. Thereforeycomputations of the RSET for a charged scalar field may help to
shed further light onto this question.

This paper represents a first step in this direction, since the geometric divergent
terms in/the Hadamard parametrix (which we derive in this paper) must be known
before the RSET can be computed. In our analysis we make no assumptions about
the background space-time geometry or the fixed, classical, electromagnetic field with
which the ¢harged scalar field interacts. Therefore our results are applicable, not only to
black hole space-times, but also to scalar QED on cosmological space-times, for which
the:RSET has recently been computed using adiabatic regularization in two [55] and
four [56] space-time dimensions.

The renormalization of the stress-energy tensor for a charged quantum scalar field
has been previously considered in four space-time dimensions within the framework
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of DeWitt-Schwinger regularization in early work by Boulware [57] and subsequently
by Herman and Hiscock [58]. Generalizing the methodology of [13,14], Herman and
Hiscock derive the quartic, quadratic, linear, logarithmic and finite renormalization
counterterms required for the computation of the RSET, together with the linear and
finite renormalization counterterms needed in computing the renormalized expectation
value of the current operator (j“)ren. This latter expectation value governs,the back-
reaction of the charged quantum scalar field on the classical electromagnetic field via
the semiclassical Maxwell equations

VP = 470 (J" ) on (1.2)

where F*¥ is the electromagnetic field, V, the space-time eovariant derivative and
we are using Gaussian units. The analysis in [58] uses the Hadamard function
GO (z,2') = (®(x)D*(2') + &*(2')P(x)) where a star * denotessthe complex conjugate.
The Hadamard function GV (z, 2') is related to the Feynmian propagator Gp(z,2’) by
the relation Gp(z,2') = G(z, 2') — 3iGY(x, 2’), where G(a, ') is one half the sum of the
advanced and retarded Green’s functions. We emphasise that the Hadamard elementary
function G (x,2') is not the same as the Hadamard representation of the Feynman
Green’s function Gg(x, z’), which is our focus in this'paper. A method for computing the
imaginary part of G (z, 2’) in a Euclideanized stati¢, spherically symmetric space-time
is developed in [59]. More recently/thesSeeley-DeWitt coefficients for a charged scalar
field appearing in the DeWitt-Schwinger expansion have been studied in an alternative
approach using heat kernel methods [60, 61}

The outline of this paperiis as follows. In Section 2, we give the Hadamard
parametrix of the Feynman Green’s function for a massive complex charged scalar field
with arbitrary coupling to thecurvature and in arbitrary space-time dimensions, in
terms of sesquisymmetric bisealars U(x,2’), V(z,2") and W (x,z’), which have power
series expansions in the square of the geodesic distance between the space-time points.
The recurrence relations satisfied by the expansion coefficients (which are themselves
biscalars) are derived in Seetion 3, and solved explicitly for two, three and four space-
time dimensions, up to the order required for the computation of the RSET. Expressions
for the renormalizediexpectation values of the current and RSET are found in Section 4
in terms of quantities which depend on the quantum state of the field. We compare our
results with these arising from other approaches to regularization in Section 5. Section
6 contains‘our conelusions and discussion.

2. Feynman Green’s function for a charged scalar field
In d'space-time dimensions, we consider a massive, charged, complex scalar field ® of
mass m and charge ¢ satisfying the equation

[D,D" —m? —ER] @ =0 (2.1)

where D, = V,, —igA,, is the covariant derivative, with A, the electromagnetic potential;
R is the Ricci scalar curvature and & a coupling constant. Throughout this paper the
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metric has signature (—, +,...,+). If £ = 0 the scalar field is minimally coupled testhe
Ricci scalar curvature and, in d space-time dimensions, the scalar field is conformally
coupled to the curvature if £ = &, where

d—2

YEE (2.2)

e =

We assume that the scalar field has been quantized but that the electromagnetic

field and space-time metric remain classical. The scalar field is assumed to be in a

Hadamard state (this is a reasonable assumption for physical states [62]). We consider

the Feynman Green’s function Gg(x,z’) for this state, which is given by the expectation
value of the time-ordered product

A

—iGp(z,7') = <T [cﬁ(x)qﬂ(x')b (2.3)

where ®! denotes the adjoint field operator (which istmot, equal to d for a complex
scalar field). The Feynman Green’s function Gg(@ya’), is a biscalar function of the
distinct space-time points x and z’ and satisfies the inhomogeneous scalar field equation

[D,D" —m? — £R] Gp(x, 2% = g (z)] "% 6%(x — 2) (2.4)

where g() is the determinant of thé space-timie metric and §¢(x—2') is the d-dimensional
Dirac delta function. We assume henceforth that the space-time point 2’ lies within a
normal neighbourhood of the point z, so that there is a unique geodesic connecting the
two points.

Our assumption that the quantum state of the scalar field is Hadamard dictates the
form of the Feynman propagatornGe(x, z’) for closely separated points, depending on
the number of space-time dimensions. In all cases the Hadamard expansion of Gg(z,2)
depends on the geodetie interval o(z, x’), which is one-half the square of the geodesic
distance between x and &/, and satisfies the equation

20 = g ot (2.5)

where we use a'semicolomy;, to denote a space-time covariant derivative, that is o'* = V#o.
Depending on/the number of space-time dimensions, the Feynman propagator will
depend ontwo or three biscalars, which we denote U(x,z’), V(z,2") and W (z,z’) in
accordance with standard notation [25], and which are regular in the limit x — 2’
In theplist ' below we give the form of the Feynman propagator in terms of U(z, '),
V(z,2'), Wi(x,2’) and o(x,2’) for different numbers of space-time dimensions, and also
the expansions of U(z,z’), V(z,z') and W (z, ') in terms of powers of o. In each case
we.include a factor ie as ¢ — 0, to ensure that the singularity structure of Gg(x,2’)
is consistent with the definition of the Feynman propagator as a time-ordered product.
We use a superscript of the form (d) to denote the number of space-time dimensions d.
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d = 2 In two space-time dimensions, the Hadamard form of the Feynman propagator. is

/
~iG? (z,2) = @ {V(Q)(x,:r’) In [% + ie} + W@ (z, x')} : (2.6)
where 1
() —— 2
a ym (2.7)

and the biscalars V®(x,2') and W®(z,2') can be written as power series in the
geodetic interval o:

VO(2,2)) =Y VP (x,2)0"(x,2), (2.8a)
n=0

W (o) = > WP (x,2")o"(x,2'). (2.8b)
n=0

d=2p, p>1 When the number of space-time dimensions /is even and greater than
two, so that d = 2p with p = 2,3, ..., the Hadamard expansion of the Feynman
propagator takes the form

U %N @ya’)

[o(x, 2" Wt 1e]PT

—iG%Qp)(QE,QS/) — o {

/
_i_V(QP)(x)x/) i I:U(:Z;x ) + 1€:| + W(2p)<x7$/)} 7 (2 9)
where p—1)
2p) _ P~ 921
@ 2 (27T)p ( : 0)
and the expansions of U@, ')y V) (z,2") and W) (z,2') in powers of o(x, 2')
are now
p—2
UG 'Y= ZU;SJQP)((IZ,I/)O'”(I,ZE/), (2.11a)
n=0
V) (5 2') = Zv,fzp)(x,x')an(x,x'), (2.11Db)
n=0
W(2p)<x7x/> _ Z W7§2p) (l‘, :L”)a”(x, x/). (2.11(3)
n=0

d=2p+1 When the number of space-time dimensions is odd, d = 2p + 1 with
p= 0,152; ..., the Feynman propagator has the Hadamard form

2p+1
LGP (2, 2) = oD uer(e, o) WD (g ) Y (2.12)
o2, 2/) + i
where .
L(p—1
e _ L _22 (2.13)
2 (2m)P*2

Page 6 of 31
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and
U(2p+1)(x,x/) - ZUSPH)(%f)Un(%x,)v (2.14a)
n=0
WEr(z, o) = 3 W @, 2!)o" (@, o) (¥114b)
n=0

The quantity ¢ introduced in the Feynman Green’s functions (2.6, 2.9) for,even space-
time dimensions is an arbitrary length scale, required to ensure that, theargument of
the logarithm is dimensionless. Both the Hadamard parametrices (2.6, 2.9, 2.12) and
the general forms of the power series expansions of U(x,z’), V(z,;2") and W (x,z’) (2.8,
2.11, 2.14) are unchanged from those for a neutral scalar field [25] because including the
gauge potential A, does not alter the principal part of the'PDE (2.4).

There is one significant difference in the FeynmansGzeen’s function G(Fd) (z,2") and
Hadamard parametrices for a charged complex scalar field ‘¢empared to a real neutral
scalar field considered in [25]. For a real neutral scalar field, both the Feynman Green’s
function G\¥ (x, 2') and the Hadamard coefficients U@z ,2"), V@ (z, ') and W@ (z, 2')
are real symmetric biscalars. However, forithe complex charged scalar field, these will
be complex sesquisymmetric biscalars [63];,satisfying the symmetry relation

K(@yx')y= K (2" x). (2.15)

The condition (2.15) will also be satisfied by the Hadamard expansion coefficients
Ul (x,2'), Vn(d)(x,x’ ) and A (x,2"). Now consider a general symmetric
sesquisymmetric biscalar K (z, 2) satisfying (2.15), and suppose that this has a covariant
Taylor series expansion of the form

K(2,2") = ko(2) + ki, (#) 0" + ko (2) 00 + kg (z)ot oo + .. (2.16)

where the coefficients kgy.k1,, k2, and k3, are complex and depend only on the space-
time point z. From(2:15), the real part of K (z,2’) is a symmetric biscalar. This means
that ko(z) must be real and that the real parts of k1, and ks, are fixed to be [64-66]:

1
Rk, = — §k0;u (2.17a)
1 1
Rifkgion] = — 5% [k2(/u/;/\)] + ﬂko;(/w)\)' (2.17b)
In additien, we find that the imaginary part of ks, is also fixed by (2.15):
S ko] = 43 [kO;W + 2k1(u;l/)] -9 [kl(u;l/)} (2.18)

where we have simplified using (2.17). In (2.17, 2.18), we have used the notation R[]
0 denote the real part and [k| the imaginary part of the quantity k.
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3. Hadamard coefficients

While the Hadamard expansion of the Feynman propagator is the sameyfor a charged
as for an uncharged scalar field, it is anticipated that the form of the/Hadamard
coefficients UL (x,2"), v\ (x,2") and Wi (x,2") will be changed by thé introduetion
of the electromagnetic potential A, into the scalar field equation (2.4).” Tmythis section
we derive the recurrence relations satisfied by the Hadamard coefficients, and give their
explicit forms for d = 2, 3 and 4 to the order required for the renormalization of the
stress-energy tensor.

To derive the recurrence relations, we make use of (2.5) for the'geodetic distance. In
addition, the recurrence relations involve the Van Vleck-Morette determinant A(x,z’),
a regular biscalar defined by

N|—=

A(z,2') = — [~g(2)] 2 det [~0 (e =g ()] (3.1)

where a subscript ; v/ denotes the space-time covariant derivative V,, with respect to the
space-time point 2’. The Van Vleck-Morette determinant is related to the D’Alembertian
of the geodetic interval by

V,Vio = d — A SKC0", (3.2)

which simplifies the recurrence relations.

The recurrence relations that we detrive below for the Hadamard coefficients
Uld (x,2") and V@ (x,2') can, atpleast in principle, be solved by integrating along the
unique geodesic connecting theSpacestime points x and 2’. As a result, these Hadamard
coefficients are unique and determined by the space-time geometry, the background
electromagnetic potential A, and the parameters ¢, £ and m appearing in the charged
scalar field equation (2.4). In particular, they do not depend on the state of the quantum
scalar field, a point which iserucial for the process of Hadamard renormalization (see
section 4). In contrast, the Hadamard coefficients Wrgd)(:p, x') are not uniquely specified
and the Hadamard coefficient Wéd)(x, x') is completely undetermined by the recurrence
relations. If this coefficient were known, then the recurrence relations could (in theory)
be solved forsthe coefficients W,gd)(:c,x’ ) with n > 1 by integrating along the unique
geodesic connecting' z and z’. The undetermined Hadamard coefficient Wéd)(x,x’ )
depends en the state of the quantum scalar field as well as the space-time geometry and
the electromagnetic potential (which we are regarding as fixed and purely classical).

Solving the recurrence relations by integrating along a geodesic is possible in
practice only for space-times possessing a high degree of symmetry. For a general
space-time and background electromagnetic potential, closed form expressions for the
purely geometric Hadamard coefficients U (x,2'), v, (x,2’) cannot be derived. When
performing renormalization (as we shall discuss in section 4), it is therefore useful to have
covariant Taylor series expansions of the Hadamard coefficients Urgd)(x,x/ ) Vn(d)(:v,a:’ )
(where applicable) in terms of o#. We write these covariant Taylor series expansions as

Page 8 of 31
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follows:
UD(z,2') = Z Ur(gllmaj (x)o?* (x,2') . ..o (x,2"), (3.3a)
5=0
ViD(z,2') =YV (@)o @ (@,a)) ..o (z,]), (3.3b)
§=0

where the U V(;i) are symmetric tensors of type (0,j) defined at the space-time

nj o 'n,
point x. To find the UY(L?), Véj), we will require the covariant Taylor series expansions
of the quantities o.,,, the square root of the Van Vleck-Morettesdeterminant A% and
1
A_%A;ZMO'W, which can be found in [67]. To the order we require, thewexpansion for o,

is

1 o 1 Dt
U;#V = g#” o §R#a1’/0¢20’a107a2 + ERNQWQZGSU’MO”CMQU’&S
_ |:@R,ua111012;043044 + ER,umpaszagym; oL 3302 503 i
+..., (3.4)
while that for Az is
1 o 1 .
Az =1+ 1—2Ra1a20’°‘10’“2 — ﬁRala%asa’o‘la’aza’a?’
1 1 -
+ [%Ralaz;asm + %RPOHTOQR azpay
1 o
—l-ﬁRalaQR%M} oG Be 4 (3.5)

1
and finally for A"z AZ,0% we have
1

1,1 1
ATIAZGM 2L Ry 8,00 — —
e 6 1e2 24

1% Rpiiie 3 Jpmit e %)
Roagias 07 00

120 90
T (3.6)

1 1
T e e e R e oY
+ I: Ralag;a3a4 + _Rpozl'ragR agpay | O 0 "0 "0

In deriving these¢ovariant, Taylor series expansions of the Hadamard coefficients, we will
not assume the field equations for either the space-time curvature or the gauge field.
The gaugedfield'strength F),, is defined by

F.,=V,A -V,A, (3.7)
The calculations below make use of the identity
VIVYE,, =0, (3.8)

which follows from the definition of the Ricci tensor and the antisymmetry of the gauge
field strength F),,.
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3.1. d=2
3.1.1.  Recurrence relations for d = 2 To find the recurrence. relations for

the coefficients Vn@)(x,x’), we substitute the Hadamard parametrix (2.6), into the
inhomogeneous scalar field equation (2.4). From the resulting terms préportional to
log [0/¢? + i€], we find that the biscalar V?)(z, 2') satisfies the homogengous scalar field
equation (2.1):

0= [D.D"— (m*+¢R)| V@), (3.9)

while the remaining terms in the inhomogeneous scalar field equation (2.4) yield
14l
0 =0 [DuD" — (m? +€R)| W + 2 07D, — A ¥gg [ W, (3.10)

We now substitute the power series expansions (2.8) into (8.9, 3.10) and compare
coefficients. The O(c?) terms in (3.10) give

0= [JWDM - A_%A;%ua;“} A (3.11)

In order that the leading-order singularity in the Hadamard parametrix (2.6) matches
that in Minkowski space-time, it must be the case;that V0(2) (x,2") satisfies the boundary
condition [25]

Vi (=1 (3.12)
The recurrence relation satisfied by the coeffi¢ients V,?) is derived from (3.9) and takes
the form
0= [D,D"— (m®+ER)| VP
+2 (n -py| oD~ A3 ALoH 1 (1 + | V.. (3.13)
for n = 0,1,.... Finally, the higher-order terms in (3.10) give the following relation

between the coeflicients W7§2) and Vn(z)
0= [D.D! —(m*+¢R) | WP
B2 (4 1) [J;“DM C AT AZOH 4 (14 n)] W,

ny [0”‘DN — ATEAZLGY +2(1 + n)] v (3.14)

3.1.2.  Expansions for d = 2 The recurrence relations (3.13) together with the
conditions (3:11, 3.12) uniquely determine the coefficients Vn@)(x,x’ ). For a neutral
scalar field, %(2) (z,a') is identically equal to —Az(z,2’) [25], but the presence of the
gaugepotential A, in the covariant derivative in (3.11) modifies VO(Q)(a:, x') in the case
where the scalar field is charged. We therefore consider the covariant Taylor series
expansions (3.3b) of the coefficients v, (x,2’). To find the RSET, it is sufficient to
compute VO(Q) up to O(o) and V) to zeroth order.

Page 10 of 31
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These expansions are known for a neutral scalar field [25], so we just need gosfind
the corrections due to the gauge field potential A,. Since the relations (3.11, 3.13) are
linear in the coefficients Vn@), we write

VP =—Ar + V@, (3:15)
Substituting in (3.11), the equation satisfied by the correction ‘70(2) is
1 ~
0= |o#D, — A3 A20*| V¥ +igA, oAz, (3.16)

The boundary condition (3.12) implies that 170(02) =0, and then from (3.16) we have

Votr = —iqA,, (3.17a)
. 2 .

(2 1q q 1q

%(2;)w = EV(MAV) + §A[LAV = §D(,U,AI/) (317b)

Combining these with the expansion (3.5) for Azland usiig the fact that, in two
dimensions, the Ricci tensor and scalar are relatedsby

R

Ry gy (3.18)
we have
Vao) = —1, (3.19a)
Vatr = —iqAy, (3.19b)
1 i
2 _ q
%2MV - ﬂRguV + ED(}LAI/) (3190)

We see that corrections to VO(Z) due to the electromagnetic potential arise at (9(0%).
The leading order correctionsydueto’A,, are independent of the space-time metric and
therefore arise in flat Minkowski space-time as well as curved space-time. At O(o) in
V0(2)7 the corrections due to theelectromagnetic potential do now depend on the metric
via the covariant derivative. )Bearing in mind that the electromagnetic potential A,
is real, it is straightforward to check that 9%[1/0(12;] satisfies the condition (2.17a) and
%[%(22;11/] satisfies (2:18).

The nextreoeflicient; \/1(2), is found from the recurrence relation (3.13) with n = 0.
Since the form/0f this coefficient, Vl(z), is known for a neutral scalar field [25], we write

V1(2) = Vl(z) + ‘71(2), (3.20)
whereéthe correction ‘71(2) due to the gauge potential satisfies the equation
0= [DuD" = (m* +€R)] Vi +2 0D, — A3 G0 + 1] T2
— 2igo A, VP 4 [2igAMY, +iq (V,AP) + P A, AP A3, (3.21)

To find the RSET, we only require the zeroth order term in 171(2), which is found to
vanish
Vi) =0, (3.22)
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and thus . .
Vi) =Vip) = —5 [m2 + (& - 6> R} : (3.23)

Therefore, to leading order, the electromagnetic potential A, has no effect on Vl(z).

3.2. d > 2 even

3.2.1. Recurrence relations for general d = 2p, p > 1 Substituting the Hadamard
expansion (2.9, 2.11) into the inhomogeneous scalar field equation.(2.4)sand comparing
coeflicients of the various powers of o, we find recurrence relations for the coefficients
U (2,2, Vi) (2, 2') and W™ (z, o).

The equation for UéQp ) is derived from the O ([a +ie] 2 ) term in' the inhomogeneous
scalar field equation (2.4), and takes the form

1 1
0= [A*i AZoh — J;“D#] U (3.24)

In order that the leading-order singularities in the Hadamard parametrix (2.9) match
those in Minkowski space-time, it must be the case that UéQp ) satisfies the boundary
condition [25]

U (z) =1 (3.25)
Due to the terms containing the electromagnetic potential A,, it is not the case that
UéQp ) is equal to A% as for a neutral scalar field. Since the equation for UéQp ) s linear,
we can write

U = Az + U, (3.26)

and then U™ satisfies the equation
) e P S = (2p) . . 1
[U’“DM — A 2A;2#J’”} U™ =iqA, ot Az, (3.27)

Terms in the inhomogeneous scalar field equation of order [o +ie] *™"*" for n =
0,1,...p — 3 give he, following recurrence relations for the Hadamard coefficients
U )(a: x')
0= [Dpp* — (m® + ¢R)] U
1 1
Do ¥2—p) [A—m@aw —o#D, — (n+ 1)] U, (3.28)

forn=0,...,p—3.
The biscalar V®P)(z, 2') satisfies the homogeneous scalar field equation, derived
from’the terms in the inhomogeneous scalar field equation proportional to log [o/¢* + ie]:

0= [D,D" — (m®+ £R)| V) (2, 2') (3.29)
and its expansion coefficients are governed by the recurrence relations
0= [D,D" — (m* +£R)] V2P
+2(n+1) [o"D, - A Az 4+ (p+ | v, (3.30)

Page 12 of 31



Page 13 of 31

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-106536.R1

Hadamard renormalization for a charged scalar field 13

forn =1,2,.... The term of order [o 4 ie] " in the inhomogeneous scalar field equation
(2.4) gives the boundary condition for V,*”:

0= [D,D" ~ (m + €R)) U
+2 [JWDM CATEALGH 4 (p— 1) V. (3.31)
By considering the terms in the inhomogeneous scalar field equation (2:4) which

are O ([0+ie]k) for K = —1,0,1,2,..., we find that the biscalars V®?(z, ') and

W) (2, 2') are related via
0= [D,D" — (m?+€R)| U + o [D, D" — (m*FER)) W)
+2 oD, - A3 ALGH 4 (p— D] ves. (3.32)

The O (6°) contribution to (3.32) is simply equation (3.31) for the Hadamard coefficient
VO(Q]’J )(x,2’). The recurrence relations for the coefficients Wiz, ') are found from the
O ([o + ie]”“) contributions to (3.32) and are given by

0= [D,D"— (m?® + £R)] W)
1
+2(n+1) [U;#Du - A_%A;ZLU;“ +in + p)] W,Eipl)
1 L
+2 0D, = AAZo" K20t 1+p)| V. (3.33)

3.2.2. Fxpansions for d =4 We begin bysfinding the covariant Taylor series expansion
of Ué4) using the governing eguation (3.27):

Uy =0 (3.34a)
Usijp = iqAu; (3.34b)
~ 1, 1
Ué;LZLI/ = X §1qv(,u,AV) - §q2AuAu; (334C)
~(4) 1. 1. 1,
U03;w>\ = EIQV(MVUA)\) + ElqR(;wA)\) + §q A(MVVAA)
1
= Cig? A, A Ay (3.34d)
6
() L. I 1.
Uotpe == ﬂlqA(uVuR,\T) — ﬂlqR(WVAAT) = ﬂqu(MVyVAAT)
1 1 1
— 37 (V) (Vadn) = 510" BowAnAn) — 207 AWV, VoA
1 1
+ ZiQBA(MAVV,\AT) + ﬂq‘lAHAVA,\AT. (3.34e)
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Combining these with the expansion of Az (3.5), and simplifying, we find compact
expressions in terms of the covariant derivative:

Uy =1 (335e)
Usp, = igAu; (3.35h)
Usppy = %Rw - %quAy); (3.35¢)
Uééﬁlm = - iR(w/;/\) + %quDVAA) + %A(MRM; (3.35d)
Usiwsr = %Rw;m + %R”wﬂwxpm + ;@RWRM)

- %D(MDVDAAT) - %D(H [ALRyn)] - (3.35¢)

As in d = 2, we find corrections to Ué4) due to the electromagneétic potential at O (a%),
and the leading-order corrections due to A, are independent,of the space-time metric.
Terms involving coupling between the electromagnetic potential and the Ricci curvature
arise at O(o2). It is straightforward to check that S‘S[Ué;i)w] satisfies (2.18), while (2.17)
also holds.

To find ‘/0(4), we proceed in a similar way and write

Vo= ViNE Ty, (3.36)
where Vé4) is the form of ‘/0(4) for an uneharged scalar field, as given in [25]. Then the
. . (4
equation satisfied by V™ is
20"V, — AT ALgM g At + 1| ViV 4 (DD — (m? + €R)] U
= 2ig A, 0"V R[2igAFV, +iq (V,A") + ¢*A, AF] A3, (3.37)

As an intermediate step, we can write DMD“ﬁé4) in the form

D, D*US = igDFA, + {6gaﬁﬁé§iﬁu —igD*D, Ay + gAO‘RW} o

+ 1200835 + 6D Uliny, + D*Dallfy,

250 poa_ 4 4a iq N
#3000 B0 = oA Rauw) = A Rguia” | 070"

T (3.38)

This simplifies to
- i 1 :
D, DU =iqD* A, + % {AaRau + 5 RA,+ V“Fau} o
iq iq iq
—R yDaAa — —RD Al/ _AC“R via
+LQ“ 12 g A e
@
4
+q2A vo iq R®, F v 3.39
g via = ot (u va| 0T (3.39)

19 40 o 1 wa
—EA Ra(u;y) + —F #Fya-f-ﬁv V(MFV)Q
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The covariant Taylor series expansion of ‘70(4) is then

Va! =0; (3.402)

~@) g 9 1 1q ‘

~(4 1q 1
::; ‘/0(2;31/ - - Z [m2 + (5 - 6) :| D(M - (g - > R;V)

13 2 q2
14 — —Fa Fl,a — EA(MVQFV)Q — V(MV“FV)OC (340C)

15 24 24

Combining these with the expansion of Vé4) given in [25], we have
18 4 1 1
19 Ve = 3 [m2 + (5 - 6) R} ; (3.41a)

21 4) _ 1 q 2 1
‘/1 __(5__) + |: +<§__)R}A

24 - —VO‘ R (3.41b)

1 1 1 3 1

26 (4) 2

V = — + — = |RWR,, +— - — | R,, — —U0R,,
27 02 24 {m (5 6) } . 12 (5 20) o 240 K

1
29 LR R — L RPRG, — —— R, Rus
30 T 180 360 H 360 o

zz A A

33 )
34 _ L e %A(MvaFy)a Mg voR,. (3.41c)

35 24 24

The leading order form of V0(4) is therefore, as in d = 2, unaffected by the presence

oNOYTULT D WN =

38 of the gauge potential A, ¢ At (’)(a%), as well as corrections due to the potential A,
39 the electromagnetic field strength F), also arises, with couplings between the gauge
potential and curvature appearing at O(c'). Again, the coefficients in the covariant
42 Taylor series expansion of VO(4) satisfy (2.17a, 2.18).

43 Similarly, we write V14 as

i Vi = v+, (3.42)

48 where V1(4) is theform of \/1(4) for an uncharged scalar field, as given in [25]. The equation
49 satisfied (by ‘/1(4) is

I . ~ =~
5 26, — AEAL0 — ig,0% +2] TV + [, — (w2 + €R)] T
53 = 2igA, 0" VY + [2ig A"V, +iq (V,A") + ¢2A, A4 ViV, (3.43)
55 Only. the zeroth order term in \71(4) is needed for a computation of the RSET in d = 4.
26 We find that this is given by

59 7

> 5 Faﬂ Fop. (3.44)
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Combining this with the expression for V1(4) from [25], we have

1 1 S| 1
4 _ = 2 4t - 4t 1 pag
Vi . [m +(§ )R} (g 5) OR 720R Rz

1
+ %RO‘WRW(S - EF PF.p. (3.45)

Here there is a correction due to the electromagnetic field strengtheat leading order.
This correction will be important in Section 4.5 where we consider the trage anomaly.

3.8. d odd

3.3.1. Recurrence relations for general d = 2p + 1 The récurrencée relations satisfied
by the coefficients in the power series expansions (2.14) férodd numbers of space-time
dimensions are derived in a similar way to those for evensspace-time dimensions. First we
substitute the Hadamard parametrix (2.12) into the inhomogeneous scalar field equation
(2.4). Due to the fractional power of o in (2.12), the resulting equation consists of two
parts. The first involves only integer powers of & and shows that WP+ satisfies the
homogeneous scalar field equation

0= [D,.D" — (m?+ ER)JW D), (3.46)
while the second involves nonintegerspowers of o and gives the equation satisfied by
UCPHD  namely

0=o0[D,D" < (m? + ¢R)| U
—(2p 1) [6"D,% A*%Aia;#] ) (3.47)

Substituting the power seriésiexpansion (2.14) for U+ into (3.47), the O(c°) term

gives the equation satisfied by U02p 1,

0,— [awDM - A*%Aza?“} Uiy, (3.48)
while the coefficient,of o"i! yields the recurrence relation
0= [D,Dt—(m®+ ER)] UPHY
4 (2n+3 —2p) [U?“Du — ATIALS 4 (n+ 1) | USHY. (3.49)

The boundary condition satisfied by U02p ) is [25]

U™ (2, z) = 1. (3.50)

3:8.2._Expansions for d = 3 We first note that the equation (3.48) and boundary
gondition (3.50) satisfied by UéQpH) are identical to those (3.24, 3.25) satisfied by Ué2p).

Page 16 of 31
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Therefore the expansion of U(g?’) is the same as that of Ué4), and the terms required,to
calculate the RSET are:

Uy =1 (35La)

Ut = 1qAu; (3.51D)
(3) 1 iq _

UOQ/J,I/ - ERMV - ED(MAV)) (351(3)
@ _ 1 iq iq

U03[AV>\ - ﬁR(#V;)\) + gD(,u,DUA)\) + EA('UJRV)\). (351d)

In d = 3, we also require Ul(?’) to O(o**) in order to find the RSET. Theequation satisfied
by U1(3) is

0= [D,D" — (m*+¢R)] U + [O';“DM — AT NG+ 1] U, (3.52)
This is very similar to the equation (3.31) for ‘/0(4) in fouridimensions:
1
0= [D,D" = (m? + €R)] US" + 2 oD, — Ao +1] Vi, (3.53)

We can therefore easily deduce the expansion of Ul(?’) from that (3.41) of ‘/0(4). The terms
required for the computation of the RSET are therefore

1
Uy =m?+ <£ - 6) R, (3.54a)

1 1 1 1
Uil = =3 <§ — 6) R, g {mZ + (5 = 6) R} Ay = FV"Fop (3.540)

4. Renormalized expectation values

In (2.6, 2.9, 2.12) we have written down the Hadamard parametrix for the Feynman
Green’s function G (z, 2'){ which'depends on three sesquisymmetric biscalars U@ (x, '),
V@ (z,2") and W@ (x ') For a neutral scalar field, the biscalars U@ (z,2’) and
V@ (g, 2) are purely geémetric and are uniquely determined by the space-time geometry.
Here we are considering a charged scalar field interacting not only with the space-time
geometry but alsg.with afixed, background, purely classical electromagnetic field. As a
result, the biscalars Ul%(x, 2') and V@ (x,2') depend on the electromagnetic potential
as well as the/space-time metric, but they are still uniquely determined by the recurrence
relations derived indhe previous section.

The part of the Feynman Green’s function which is divergent in the coincidence
limit is Gg(z, 2), where we define

/
PV (z 2')In % + i€ d=2,

(2p) / /
=iGs (7, 2') = ?p) { [ (U /)(j:‘x])p_l + V(Zp)(x, ') In {% + ie} } d = 2p,
o(z,x i€

eV @,a)

\ oz, 2') +ie]"~2
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Since Gs(z, ') depends only on the biscalars U@ (z,2') and V@ (z,2"), it is uniquely
determined by the background space-time and electromagnetic potential, and takes the
same form independent of the quantum state of the scalar field. In this section we turn
to the construction of renormalized expectation values of the scalar field condensate,
current and stress-energy tensor. We first subtract the divergent Gs(g,z’) from the
Feynman Green’s function Gg(z,z’) to give a regularized Green’s functiomGg(z, '),
which takes the form

—iGr(z,2') = —i[Gp(z,2') — Gs(z,2)] = aDW Dz, 27 (4.2)

for any number of space-time dimensions d. The renormalized current and RSET will
be given by applying appropriate differential operators to,—iGg(@y2’) and then taking
the coincidence limit 2 — . In this section we first derive some useful identities for the
biscalar W@ (z, 2'), before turning our attention to thé remormalized expectation values
themselves. We emphasize that the biscalar W@ (x @4, and therefore the regularized
Green’s function Gg(z, 2') are not uniquely determined by the background geometry and
electromagnetic potential, and depend on the details of the quantum state of the scalar
field. This means that the expectation valuesiwe study«n this section will also depend on
the quantum state of the field. Our discussien in this section is for a general space-time
and background electromagnetic potential. We therefore do not specify a quantum state
for the field, and as a consequence thesbiscalar W (9 (x,2") will remain undetermined in
our analysis. We focus on general properties of the renormalized expectation values
arising from Hadamard renormalization. In practical applications, a particular space-
time, electromagnetic potential-andsquantum state will be specified, which will enable
W@ (x,2'), and therefore renormalized expectation values, to be computed explicitly
using the results presented insthis section.

4.1. Properties of théybiscalandd? (z, «")

The biscalar W4 (zg@!) appearing in the Hadamard parametrix (2.6, 2.9, 2.12) cannot
be uniquely determined from recurrence relations derived in section 3, and depends
on the quantum state under consideration as well as the background geometry and
electromagnetic potentialy, We therefore leave this biscalar undetermined, but are able
nonetheless to/deriye some of its properties. Following [25], we write W@ (z, 2/) as a
covariany Taylor series expansion in the form

TAD (= w(()d) (x) + wgi) (x)ot + wéi)y(x)a;“a;” + wéi)w\(m)a;“a“’a;)‘ +..., (4.3)

wheresthe coefficients w(()d), wgi), wéi)y and wéi)w\ depend only on the space-time point
@. We emphasize that, since the biscalar W@ (x,2') depends on the quantum state of
d)

vy and therefore they are

the field, so too do the coefficients w(()d), wgi), wéi)y and wé

undetermined by our general analysis. Since W@ (z, ') is sesquilinear, the coefficients

wﬁ), wéﬁ, and w:())i)y)\ will satisfy the conditions (2.17, 2.18). Following [25], we now
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derive some identities involving the coefficients in (4.3) which are useful for the study,of
the general properties of the expectation values of the current and stress-energy tensor,

First consider the case of even numbers of space-time dimensions. “The equations
(3.10, 3.32) satisfied by W (x,z’) in this case take the form

0= [DuD" — (m? + ER)] W) 4 2[0D, + (p+ D]V + Olg). ) (4.4)
Inserting the expansions (3.3b, 4.3), we find the following identities
0=D D“w(()zp) + 2D"w1#) + QQ“Vwé P) (m + SR) 2r)

+2(p+ 1)V, (4.5a)
0= D, D*uw'* + 4D“w§ P) | 6g‘“’w§aw - 3R“awlu (m*+ ¢R) w
+ 2D,V +2(p+2) VTP (4.5D)

The real and imaginary parts of (4.5a) are (having simplified using (2.17a, 2.18))
0= 20" (wf?) +204rS (w) Mt €R+ 24,40 w?
+2(p+ 1) VH?, (4.6a)
0= V'S < (2p) ) — gAMV P — q (VA wiP (4.6b)
We only require the real part of (4.5b). Using (2:17] 2.18), this simplifies to
0=2V"'R (w2a#> +HqA'V S (wm )> +2¢ (VA" S (wi’?)

1 1
- Zvamwgzp) - Qmawgy — { (R + (PAPV LA } (2p)

+ VL V. (4.7)

The calculation proceeds similarly for odd numbers of space-time dimensions. In

this case W (?P+1) gatisfies the homogeneous scalar field equation (3.46) and the identities
(4.5) simplify:

0 = D, DS 2D 4 ggmap Pt (m2 +ER) wi™™, (4.82)

0= BB ¢ aprafr o) L
¥+ €R) Wi, (4.8D)
The results corresponding to those in (4.6, 4.7) are

0=y R (w§ ) + 20478 (W) = [m? + ER + 24, 44w

0= V'S (wﬁf“ ) — gAY — g (VIA,) wiFY, (4.9b)
and
0 =29 (win V) + g4, (wi ) + 2 (Viaa”) § (wi)

1 1 1
a Zvamw((fp—i—l) B ER#O‘w((];QFIZ—Fl) B [ﬁgR;a + QZAHvaA“} w(()2p+1)
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respectively.

We now have the machinery required to derive expressions for the renormalized
expectation values of the scalar field condensate (1), current (J*) and stress-energy
tensor (7},,) in terms of coefficients in the expansion (4.3). The renormalized expectation
value of the scalar field condensate takes a simple form in terms of the regularized Green’s

function Gr(z,2’) (4.2)
(DD, 0 = lim R{~iGr(r,2')} = a Dl (z). (4.11)

The renormalized current and RSET are examined in the following subsections.

4.2. Renormalized current

The classical current J* for a charged complex scalar field ®nis

gt = 15 Dre — & (DFD)] = L LS D). (4.12)
8T 47
The renormalized quantum expectation value ofsthe current is therefore given as the
limit
(J")ren = =L 1ind SD" (4G, )]} (4.13)

The derivative is straightforward to compute and gives

(d) (d)
g arrq d d g d d
(Judson = =29 [Duwg . wg;] -t {qA#wé ) g [ng] } . (4.14)
We require the renormalized expectation valite of the current to be conserved, that is
5 4q
0=V*(J)ren = - {q (VA wl® + g A,V — VIS [wgﬂ } (4.15)

which holds from (4.6b, 4.9b).

4.8. Renormalized stress-emerqgy tensor

The classical stress-energy tensor for a massive, complex, charged scalar field &

nonminimally coupled to the space-time curvature is

7,/ %5 (L} 26) (D,0)' D&+ D, (D2

1 1 " %
+ 5 (2§ — 5) 99" [(D,®)" D, + D,® (D,P)"]
— £[0" DD, D + & (D, D,®)"] + £y [0°D, DD + & (D, DFB)"]

1 1
+£& (RW — §gWR) P — §m2gW<I>*<I>

=R {(1 —2¢) (D,®)" D,® + (25 — %) 9wy’ (D,®)" D,

1
—2¢9* D, D,® + 269, D,D’® + £ (RW - §gu,,R) O+ P

1
—§m2gw,<I>*<I>} . (4.16)
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When the scalar field is uncharged, the covariant derivatives D, in (4.16) are replaced
by the usual space-time covariant derivatives V, and the expression (4.16) reduces to
that given in [25,68,69] for a neutral scalar field.

Following the Hadamard renormalization prescription, the expectation value of the
quantum stress-energy tensor operator is given as the limit

(Tw) = lim R{T (2, 2') [~iGr(z,2")]} (4.17)
z'—x
where 7, is the second order differential operator

v/ * 1 T/ %
7:“’ = (1 - 26) v DﬂDz/ + (25 - 5) guvgp DPDT’ _ 2£DuDu
o 1 I,
+ 289 Dp D" + & B — 59u B | 510" (4.18)

where gH“/ is the bivector of parallel transport. According to Wald’s axioms [11], the
renormalized expectation value of the stress-energy tensor is unique only up to the
addition of a local conserved tensor. We thereforeqwrite

<Tu,,>ren =a@ lim R [7:“,(1‘, YW Dz, :L‘/)] + 0@ (4.19)

N

where é,(ﬁ,) is a local tensor whose form will be constrained by considering the divergence

A~

of (T} )ren-
Applying 7, (4.18) to W (z,2’) (4.3) and taking the real part, we find

- d d 1 d
<T,u1/>ren - a(d) {—2% (wé,u)l/> 7 QqA(M% (wgv))> - (5 - 5 w(();ﬁ)“/
T ) [0 () 0200 ()
2

o (d
+0W. (4.20)

This expression is manifestly symmetric in ¢ and v and reduces to the corresponding

1 1
+ (5 - Z) Dy — = (m? + ER + A, A) wg@} }

expression in [25] when ¢= 0 and the scalar field is neutral.
We now examine the conservation of the RSET. Taking the divergence of (4.20),
and simplifying using the identities (4.6, 4.7, 4.9, 4.10), we find, when d = 2p is even,

VA cen = —aPPpV VP + Am Fy (JF) e + VHO D) (4.21)

pv

and when d = 2p + 1 is odd,

VD) ren = AT E}y (J")gen + VHORHD), (4.22)
where . we have used the expression (4.14) for the renormalized expectation value of the
current. The first term on the right-hand-side of (4.21) arises in the neutral scalar field
case [25]. Following [25], we therefore define

5 _ {“(2”)%%(5“ +0 d=2p,
pr T

4.23
@,S%DH) d=2p+1, ( )
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where @Ef,l,) is a local conserved tensor, giving the expected renormalization ambiguity
in the RSET. For all d, we then have

VAT ) ren = AT Fy (J") ren (4.24)
leading to the nonconservation of the RSET of the charged scalar field.. This result
follows from the fact that there are two matter fields in our system, theselectromiagnetic
field (which we are treating as purely classical) and the quantum charged)scalar field.
It is only the total stress-energy tensor arising from both matter fields-which will be
conserved. The stress-energy tensor due to the classical electromagnetic field is

1
TEI/ = FupFup - ng/FpTFpT- (425)

Taking the divergence gives
VHTE, = F,, Y, F" = An Fp(d? ) ent (4.26)
where we have used Maxwell’s equation
0 = Vukp (4.27)

(which is unmodified by the presemnce of the charged scalar field) and the second
equality follows from the semiclassical Maxwell equation (1.2). Therefore, since the
electromagnetic field F),, is antisymmetricpthe total stress-energy tensor TEV + (’f W) ren
is conserved, as required.

With the definition (4.23), theexpression (4.20) can be simplified using (4.6a, 4.9a)
to give, when d = 2p is even,

A 2 1 2
<le>ren = Oé(2p) { 2R <w§;ﬁ/) - QqA(N\S (wiij))) (§ B 5) wéﬁi

1
& (ER + P AA) 0 + g K& - 1) Ouwg™ — Vf&”] }

N @g’p ’ (4.28a)
and when d = 2p +1iis odd
<Tuu>ren = a(2p+1) {_2% <w§ill)/+1)> - QQA(# (wSI;Jrl))
1
_ (g — 5) WD 4 (ERy, + PALA,) Wi
1

4t Renormalization ambiguities

The RSET constructed in the previous subsection was defined up to a local conserved
tensor @,(jiy), in accordance with Wald’s axioms [11]. The possible form of @&dy) is discussed
in detail in [25].
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There is an additional renormalization ambiguity in even space-time dimensions,
due to the choice of renormalization length scale ¢ arising in the Hadamard parametrices
(2.6, 2.9). This leads to an ambiguity in the Hadamard coefficient W PN (@, )
corresponding to the freedom to make the replacement

WE (2, 2") — WO (2, 2') + V) (2, 2') In 2. (4.29)

Considering the terms in the covariant Taylor series expansion of W) (x 2f) (4.3), this
replacement leads to

(217) — W (217 + V(Qp In €2 (43()&)
w$%+%M+W$mﬁ (4.30D)
wgipi/) - wéuy <‘/02uy + g/LV‘/l > ln 62- (430C)

Ambiguities in the renormalized expectation values of the scalar field condensate, current
and stress-energy tensor therefore arise.
For the scalar field condensate (4.11) we find

A A

(DD, — PP VO 1y 2 (4.31)

From (3.19a), in two dimensions ‘/0(02) israsconstant. In four dimensions, from (3.41a),
the renormalization ambiguity depends,on the Ricci scalar curvature as well as the
mass and coupling of the scalar field, and vamishes when the scalar field is massless and
conformally coupled. In both twe,and four space-time dimensions, the renormalization
ambiguity in the expectation value of the scalar field condensate does not depend on
the electromagnetic potential.

The ambiguity in the genormalized expectation value of the current (4.14) is

(2p)
3 arg 2 2p) 2p) 2
(Ju)ren = i {qAMw(() S [w%up} ( A, V( PG [VO(I;ZZ)]> lnEQ}. (4.32)
In two space-time dimengions, using (3.19a, 3.19b), we see that the ambiguity in the
renormalized expectation'value of the current vanishes. From (3.41a, 3.41b), the same
is not true in/four space-time dimensions, when
(T Yren — ﬂ {qA w((]4) - [w§4)] + L (VPF, )lnEQ} . (4.33)

o A7 (] o 12 PH
Given'that the current acts as a source for the semiclassical Maxwell equations (1.2), this
renormalization ambiguity corresponds to a constant renormalization of the permeability
of free'space (which has effectively been set equal to 47 in (1.2) as we are using Gaussian
units), which we discuss further in section 5.

The renormalization ambiguity in the RSET takes the form

~

(Tyhren = (Tyhren + U2 In (> (4.34)
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where the local tensor \IIE?,,p ) is
v = a0 o V)] - 20403 (Vi3] - (e~ 1) vl
2 (2p 1 (2p)
(SRMV +q A,A ) 5_ — ) 9 BV50
_g/u/‘/l((?p)} . (435)
In two space-time dimensions, we have, using (3.19, 3.23),
@)
a
\Ijj(fll) = ngguu- (436)

This is the same as in the neutral scalar field case [25] and there are o corrections due to
the electromagnetic potential. In particular, \I/ffy) vanishes if thesscalar field is massless.
For a massive scalar field, since the RSET satisfies the semielassical Einstein equations
(1.1), the ambiguity (4.34) corresponds to a renormalization of the cosmological constant
A.

When d = 4, the tensor (4.35) is mugh more complicated. Using (3.41, 3.45), it is

found to be
1 1 1 1
W — @ — = 2 w —0O
PEe 5 & 5 m~ -+ & 6 R| R, + 120 R,

1/, 1. 4 1 1
—— €@ =2+ Ry — — R Ry + —R*® R,
(é 3¢ F 30) 290 T 180 n

2

L Fe Fro+ g {—RaﬁR

—_RoBY
+ R Raﬁ’yu + 12 720

180

7 RQB%SRO[B”/& 4= <§ . _é ) OR

—% [m2 + (5 — é) Rr + 48F0‘5Fa }} : (4.37)

In this case there are eorrections arising from the electromagnetic field strength. The
curvature terms i, (4.37) correspond to higher-order corrections to the gravitational
action giving zise to thé semiclassical Einstein equations (1.1). The corrections due
to the electromagnetic field are proportional to the classical electromagnetic stress-
energy tensor (4:25) and therefore the ambiguity (4.34) in this case corresponds to a
renormalization of the gravitational constant G (which we have fixed by 87G = 1 in
(1.1)). Seessection 5 for further discussion of this point.

4.5."drace anomaly

Now,suppose that the local geometric tensor el ,, which arises in the RSET (4.28a,
4.28b) is given by
o —

pv

{xp,(ff) Ine? d=2p, (438

0 d=2p+1,
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so that the only renormalization ambiguity we are taking into account is that due,to
the choice of renormalization length scale £. We now consider the trace of the RSET.

First, from the homogeneous scalar field equation (3.9, 3.29) satisfied by the bisealar
V@ (z,2"), we can establish the identity

0= 29" R (Vi ) + 20V + 204" (Vi) = [m® + ER + A, AT VR (4.39)

We can then calculate the trace of U, (2p).

guquff) _ C¥(2p) { 29;1,1/8% |:VE) QP)] 2qA,uO [‘/()(125] —9 ‘/1217)

2uv

+(2p-1)(g-—zz;iéﬁ)[jvg%) kf{+q2A“Aﬂ}ng}

= —at fm2Vigr — (2p - 1) (g &) WGP} (4.40)

where &, given by (2.2), corresponds to conformal coupling and we have simplified using
the identity (4.39). Note that the trace (4.40) vanishes when the scalar field is massless
and conformally coupled.

The trace of the RSET (4.28a) is given,when d:= 2p is even, by

(T )een = ) { =29 (i) = 9gA"S (w(P)
—(2p — 1 (£ &) O + (ER + ?AMA,) wi™
—opVEr L + g B, (4.41)

which simplifies, using (4.6a) to-give
(T )sen = =0 {m2ut N@pA1) (€ - &) D™ — 27 |+ g w@) (4.42)
A similar calculation for d'= 2p 4+ 1, using (4.9a, 4.28b), yields
(T )sem— 2 {2l — 2p (¢ - &) D™} (1.43)

If the scalar field is'massless and conformally coupled, the trace (4.43) vanishes for odd
numbers of space-time dimensions. However, for even number of space-time dimensions,
the trace does/mot yanish/for a massless and conformally coupled scalar field. In this
case we obtain the trace anomaly

(TH) e = 2aPPVSP (4.44)

m

When d = 2, the coupling constant for conformal coupling is £& = 0, and then, using
(2.7, 3.23), the trace anomaly is
1

<T5>ren - ﬂR (445)
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In this case there are no corrections to the trace anomaly due to the electromagnetic
field. When d = 4, we have & = % and, using (2.10, 3.45), the trace anomaly takes the
form
2

(T )ten = 4—; 7710 R - %RaﬁRaﬁ + %RWWRQM — Z—8FQ'BFQ5 . (440)
In this case we therefore have a correction due to the electromagnetieifield, depending
only on the field strength tensor F,,. This correction arises in Minkowski spage-time [70],
when the curvature-dependent terms in (4.46) vanish. A similar eerrection arises in the
DeWitt-Schwinger regularization approach [58], and has also béendound in the context
of adiabatic regularization of a charged scalar field on cosmological/space-times [56]
(although note that we use different conventions).

5. Comparison with other approaches to regularization

Hadamard renormalization is not the only approagh to regularization of quantum fields
on curved space-times. Other methods which have been employed for scalar fields on
curved space-time backgrounds include DeWitt-Schwinger, Pauli-Villars, dimensional,
zeta-function and adiabatic regularization.| Thewast majority of work in the literature
concerns a neutral rather than charged scalar, field.

A notable exception to this As Boulware’s early work [57], which employed the
DeWitt-Schwinger method of regularization for a charged scalar field in four space-
time dimensions, and demonstrated that this was essentially equivalent to Pauli-Villars
and dimensional regularization,. DeWitt-Schwinger regularization in four space-time
dimensions was also studied by Herman and Hiscock [58], who considered Hadamard’s
elementary function, corresponding.to the imaginary part of the Feynman Green’s
function.

There is extensive work in the literature on the equivalence of various approaches to
regularization for a neutral scalar field. For example, it has been proven that Hadamard
renormalization is @quivalent to zeta-function regularization [16,18,71]. In addition,
the DeWitt-Schwinger representation of the Feynman Green’s function G(Fd) (z,2') for a
neutral scalar field isha-special case of the Hadamard form (2.6, 2.9, 2.12) [67]. This
means that the divergent parts of the Hadamard and DeWitt-Schwinger representations
are identical and thé DeWitt-Schwinger expression corresponds to a particular choice of
the biscalar Wo(d) (x,2') which is undetermined in the Hadamard formalism. Therefore
the Hadamardand DeWitt-Schwinger approaches to regularization are also equivalent
[71]4 The Hadamard and DeWitt-Schwinger representations of the Feynman Green’s
funetion depend on linear combinations of Seeley-DeWitt coefficients, which have
recently been proven to be sesquisymmetric for a charged scalar field [63]. Accordingly,
one may anticipate that the analysis of [67] extends to the charged case, and therefore the
DeWitt-Schwinger representation of the Feynman Green’s function for a charged scalar
field also corresponds to a particular case of the Hadamard representation studied in
this paper.
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One advantage of Hadamard renormalization is that it is a very general approach
to regularization, valid for any background space-time and electromagnetic potential,
Furthermore, the results are applicable to any quantum state, providing that state is
Hadamard (which is the case for physically reasonable states [62]). The disadvantage of
Hadamard renormalization is that, because it is so general, it does notpexplicitly give
the renormalized expectation values of physical observables such as the stress-energy
tensor. In practical applications, a particular metric and electromagnetic potential will
be specified, and renormalized expectation values computed on this background for one
or more quantum states. Unless there is a high degree of symmetry, it is likely that
numerical calculations will be required, typically involving sums ever field modes.

Friedman-Lemaitre-Robertson-Walker (FLRW) space<times, being homogeneous
and isotropic, possess sufficient symmetry to be amenable to analytic calculations.
Renormalized expectation values on these backgroundsshave been studied extensively
within the framework of adiabatic regularization, beth for meutral [68,69, 72-75] and
charged [55,56] scalar fields. The advantage of adiabatie,regularization is that, in the
scenarios in which it is valid, renormalized expectation ,values can be computed in a
comparatively straightforward manner. The disadvantage of adiabatic regularization
is that it can only be applied to those space-times, such as FLRW space-times, which
have a well-defined adiabatic regime [73]. Furthermore, in such space-times, adiabatic
regularization only applies to a single vacuum state, namely the adiabatic vacuum. The
adiabatic vacuum has been proven to be a,Hadamard state for a neutral scalar field on an
FLRW space-time [76,77], and.one would expect this to be true also in the charged case.
Furthermore, the equivalence of adiabatic and DeWitt-Schwinger (and hence Hadamard)
renormalization when the scalar field is/meutral has been demonstrated explicitly via a
lengthy calculation [73,78]. Thefact that the trace anomaly (4.46) for a charged scalar
field computed in this paper using Hadamard renormalization agrees with that obtained
in [58] using DeWitt-Schwinger regularization and in [56] using adiabatic regularization
provides strong evidence, for the equivalence of these approaches.

Very recently, adiabatiéregularization on an FLRW space-time has been employed
to study the running of \coupling constants in the theory considered here [79]. As
observed in [80], Hadamard renormalization is not the most appropriate framework for
discussing thé renormalization of coupling constants in the field equations, because
the Hadamard parametrix depends on ¢* and hence the direction in which the
points are separated. However, in even numbers of space-time dimensions, the
renormalization’ length scale ¢ which appears in the Hadamard parametrix leads to a
renormalization ambiguity (as discussed in section 4.4), which in turn can be interpreted
as a renormalization of the coupling constants. To see how our results compare to
those dérived in [79] using adiabatic regularization, we write the semiclassical Einstein
equations (1.1) and semiclassical Maxwell equations (1.2) with the dimensionful coupling
¢onstants restored and including the classical electromagnetic stress-energy tensor TMFV
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(4.25)
G + Ag = 871G [(Tuy)ren - /%OTEV} , (5.1a)
VR = pg (T ven, (5:1D)

where G is Newton’s gravitational constant, pg is the permeability of free space and
we have fixed the speed of light ¢ to be unity. We consider in turh the effect of the
renormalization ambiguity for the semiclassical Einstein equations (6.1a) and Maxwell
equations (5.1b) in four space-time dimensions.

The renormalization ambiguity in the RSET is given by (4.34)ywhere, in four space-
time dimensions, the tensor \Il,(ﬁ,) has the form (4.37), and consists of'two types of terms.
The first type depend only on the space-time curvature @and are present for a neutral
scalar field with ¢ = 0 [25]. In this case, as a result of renormalization, the semiclassical
Einstein equations (5.1a) are modified by the addition of local geometric tensors usually
denoted by H, ,%2, which arise as functional derivatives of higher curvature terms in the
renormalized effective action:

GW + Aglw + VIH;IW + 'VQH;%V = 811G [<T,UV>F9D + TEI/i| ) (52)
where ~; and v, are coupling constants and the geometric tensors are given by [25]
1
H,, =2R,, —2RR,, + [5}%2 - QDR} :

1
2, = R, — OR = 2R’ Ros, + 59 [R*’R.s — OR] . (5.3)

The second type of terms in \Ifgly) depend on the classical stress-energy tensor THFV of the

electromagnetic field. We ganwrite (4.37) in the form

1 1 2 1
4 4 1 1 2
\Ij(l}_a(){_<§—_> Hy__(HV_SHV)

w2 (e=2) (Ro = 2guR) + 1m2 < (5.4)
— - = v — = -M G — —= : .

6) \'tr T g 4" I T gt
Adding a term \I!,(ﬁ,) In 22560 (T} )ren (4.34) therefore corresponds to a renormalization
of the constants G, A, and 7, /, in agreement with well-known results in both adiabatic
regularization [69] and dimensional regularization [80] for a neutral scalar field. The

presence of the scalar field charge ¢ leads to a renormalization of the permeability of

free space:
1 1 oW
_) -

po o 12
We now turn to the renormalization ambiguity (4.33) in the expectation value of

In 2. (5.5)

the current:
a® ¢

487

(Judren = (Ju)ren + (VPF,,) In 2. (5.6)
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From the semiclassical Maxwell equations (5.1b), this yields precisely thessame
renormalization of the permeability of free space (5.5) as obtained from the semiclassical
Einstein equations. This could alternatively be interpreted as a renormalization of.the
scalar field charge by fixing the permeability of free space pg. This is the approach
taken in [79] using adiabatic regularization, where it is found from the semiclassical
Einstein and Maxwell equations that the scalar field charge is renormalized by terms
proportional to In pu, where p is an arbitrary mass scale. Therefore our results on the
running of the couplings in the theory, obtained from Hadamard remormalization, are
in agreement with those derived [79] using adiabatic regularization.

6. Conclusions

In this paper we have developed the methodology for the Hadamard renormalization of
the expectation values of the scalar field condensate, current and stress-energy tensor
for a massive, charged, complex scalar field with general coupling to the space-time
curvature. Our work extends the approach of/[25]uto the charged scalar field case.
Using the Hadamard representation of theé Feynman Green’s function, we have derived
the recurrence relations satisfied by the Hadamard eoefficients. Performing covariant
Taylor series expansions of these coefficients;ywe have, in two, three and four space-time
dimensions, presented sufficient termstimsthe expansions to enable the renormalized
expectation value of the stress-energy tensor to be computed. We have also studied
the trace anomaly of the RSET, and foundrthat while in two space-time dimensions
there are no corrections due to the scalar field charge, in four space-time dimensions the
trace anomaly is modified by a termidepending on the electromagnetic field strength,
in agreement with other approaghes to renormalization [56,58].

The formalism developed in this paper is very general, as we make no assumptions
about the background spage-time metric or electromagnetic field (both of which are
treated classically). While we have presented expansions of the Hadamard coefficients
explicitly for two, three and.four space-time dimensions, the method can be extended
to any number of space-time dimensions.

While the methedology presented here is valid for any space-time background, we
envisage that/it will be particularly applicable to the calculation of the RSET for a
charged scalarfield on charged background black hole space-times. This quantity is of
relevancefor two physical questions. First, the fate of the inner horizon of a charged
black hole, as discussed in the introduction. Second, the electromagnetic field of a
charged black hole creates charged particle pairs which alter the Hawking emission of
the black hole [81]. Using an adiabatic approximation in which the mass and charge of
the blaekthole vary slowly, Hiscock and Weems [82] considered the evolution of a charged
black hole and found that it is possible for the black hole to evaporate in such a way
that its charge/mass ratio increases (see also recent work by Ong and others [83-85]).
To go beyond the above adiabatic approximation, the full RSET is required. We leave
the resolution of these questions for future work.
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