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Abstract. We consider the definition of the Boulware and Hartle-Hawking states for quantum 
fields on black hole space-times. The properties of these states on a Schwarzschild black hole 
have been understood for many years, but neither of these states has a direct analogue on a 
Kerr black hole. We show how superradiant modes play an important role in the definition 
of quantum states on Kerr. Superradiance is also present on static black hole space-times, in 
particular for a charged scalar field on a Reissner-Nordstr¨om black hole. We explore whether 
analogues of the Boulware and Hartle-Hawking states exist in this situation. 

 
 
 

 
1. Quantum field theory on curved space-time 
Quantum field theory on curved space-time is a semiclassical approach to quantum gravity, 
wherein the space-time is fixed and purely classical. The matter content in the theory consists 
of quantum fields, which propagate on the classical background geometry. One of the most 
famous results in this framework is the discovery by Hawking [1] that black holes formed by 
gravitational collapse emit thermal quantum radiation with temperature TH given, in natural 
units by κ 

TH = 
2π, (1) 

where κ is the surface gravity of the black hole. 
The simplest type of black hole is described by the Schwarzschild metric 

 

ds2 = −  1 − 
2M

 
r 

 
dt2 + 

2M 
−1 

1 − 
r 

 
dr2 + r2 dθ2 + r2 sin2 θ dφ2, (2) 

 

where M is the mass of the black hole (we employ units in which G = c = ℏ = kB = 1). On this 
background geometry, three standard quantum states have been constructed (see Section 1.2 
for more details). The first is the Unruh state [2], which contains, at future null infinity, an 
outgoing flux of Hawking radiation. A key feature of the Unruh state is that it is regular across 
the future horizon of the black hole. In contrast, the Boulware state [3] contains no particles 
as seen by a static observer far from the black hole. Finally, the Hartle-Hawking state [4, 5] 
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represents a black hole surrounded by thermal radiation at the Hawking temperature. This 
state is regular everywhere on and outside the event horizon. Our purpose in this work is to 
investigate the analogues of these states for quantum scalar fields on Reissner-Nordstr öm and 
Kerr black holes. We begin by briefly outlining the definition of quantum states for a neutral 
scalar field via canonical quantization, and how this process is applied on a Schwarzschild black 
hole. In Section 2 we consider a neutral scalar field on a Kerr black hole space-time, and in 
Section 3 our focus is the Reissner-Nordstr öm black hole, but with a charged rather than neutral 
scalar field. Our conclusions are presented in Section 4. 

 
1.1. Canonical quantization of a neutral scalar field 

Let Φ be a neutral scalar field. The process of canonical quantization begins by expanding the 
classical field in an orthonormal basis of field modes, which we write schematically as follows: 

Φ = 
L 

ajϕ+ + a†ϕ−, (3) 

 

where j represents the quantum numbers characterizing the field modes. Here the ϕ± modes are, 

respectively, positive and negative frequency modes. For example, in two-dimensional Minkowski 
space-time where the modes are given by plane waves, in terms of time t and a spatial coordinate 

x, the modes ϕ± take the form 
 

ϕ+ ∝ e−iω(t±x), ω > 0, 

ϕ− ∝ e−iω(t±x), ω < 0, (4) 

where ω is the frequency of the mode. The field is quantized by promoting the expansion 

coefficients aj, a
† to operators satisfying the commutation relations 

 
âj , â

†
 

= δjk, [âj , â k ] = 0, 
 
â
†
, â

†
 

= 0. (5) 
 

The vacuum state |0⟩ is then defined as that state annihilated by the â j  operators, that is: 
â j  |0⟩ = 0 for all j. Therefore the definition of positive and negative frequency modes plays a 
central role in the construction of quantum states. 

 
1.2. Schwarzschild black hole 

We now briefly outline the canonical quantization of a neutral scalar field on a Schwarzschild 
black hole with metric (2). Mode solutions of the neutral scalar field equation on this background 
take the form 

ϕωℓm 

1 
(t, r, θ, φ) = 

N r 
e−iωt eimφ Yℓm

 (θ)Rωℓ (r), (6) 

where N is a normalization constant, ω is the frequency of the modes with respect to 
Schwarzschild time t, the integer m ∈ Z is the azimuthal quantum number and Yℓm(θ) is a 
spherical harmonic with total angular momentum quantum number ℓ ∈ Z+. The radial function 
Rωℓ(r) satisfies a Schrödinger-like equation 

d2 

dr2 
+ Vωℓ(r) 

 
Rωℓ(r) = 0, (7) 

 

where r∗ is the “tortoise” coordinate, defined by the differential equation 

dr∗ 

dr 
= 

(

1 − 
2M 

−1 

r 

 
. (8) 
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As r → rh = 2M , the event horizon radius, the tortoise coordinate r∗ → −∞, while r∗ → ∞ 
far from the black hole, as r → ∞. In these asymptotic regions, the potential Vωℓ(r) has the 
following behaviour: 

Vωℓ(r) → ω2, r∗ → ±∞. (9) 

Therefore, as r∗ → ±∞, we have mode solutions of the form e−iω(t±r∗) with frequency ω, and 

hence the natural definition of positive frequency with respect to Schwarzschild time t is ω > 0. 
A suitable orthonormal basis of field modes is formed by the “in” and “up” modes, whose radial 
functions have the following forms in the asymptotic regions: 

 
in (r) ∼ 

in  −iωr∗ 
ωℓ 

e−iωr∗ + Ain eiωr∗ r∗ → ∞, 

 
(10a) 

up 

� 
eiωr∗ + A

up 
e−iωr∗ r∗ → −∞, 

 

where Ain/up and B
in/up 

are complex constants. The “in” modes represent scalar waves 
incoming from past null infinity, which are partly reflected back to future null infinity and 
partly transmitted down the future horizon. The “up” modes represent scalar waves which 
are outgoing near the past horizon, partly reflected back down the future horizon and partly 
transmitted to future null infinity. 

Using the “in” and “up” modes, suitably normalized, and defining positive frequency with 
respect to Schwarzschild time t, the resulting vacuum state is the Boulware state |B⟩ [3]. 
However, Schwarzschild time t is a good time coordinate only in the region outside the event 
horizon. Alternatively, we can consider Kruskal time T , which is a valid time coordinate 
everywhere in the space-time. We can construct an orthonormal basis of modes having positive 
frequency with respect to Kruskal time T from the “in” and “up” modes (see, for example, the 
construction in [6]). The resulting vacuum state is then the Hartle-Hawking state |H⟩ [4]. In the 
definition of both the Boulware and Hartle-Hawking states, the “in” and “up” modes are defined 
to be positive frequency with respect to the same time coordinate. In contrast, to construct 
the Unruh state |U⟩ [2], the “in” modes are defined as having positive frequency with respect 
to Schwarzschild time t, while the “up” modes have positive frequency with respect to Kruskal 
time T . 

To understand the physical properties of these states, in this note we will consider 
unrenormalized expectation values of field operators, to avoid the technical challenges inherent 
in the renormalization process. Since the divergent terms which need to be subtracted to give 
renormalized expectation values are purely geometric and independent of the quantum state 
(see, for example, [7] for a neutral scalar field and [8] for a charged scalar field, which will be 
considered in Section 3 below), differences in expectation values between two quantum states do 
not require renormalization. For a general operator Ô (for example, the square of the quantum 

scalar field or the scalar field stress-energy tensor Tˆµν ), the unrenormalized expectation values 
of the operator in the Boulware, Unruh and Hartle-Hawking states on Schwarzschild space-time 
can be written as mode sums: ⟨B|Ô|B⟩ = 

L
 

∞ 

dω 

 
in 
ωℓm 

 
up 
ωℓm 

 
, (11a) 

ℓ=0 m=−ℓ  0 ⟨U|Ô |U⟩ = 
L L

 
∞ 

dω ωℓm 
0 

 
up 
ωℓm 

 
coth 

ω 
 

 

2TH 

) 

, (11b) 

ℓ=0 m=−ℓ ⟨H|Ô|H⟩ = 
L  L

 
∞ 

dω ωℓm 
0 

 
up 
ωℓm 

 
coth 

ω 
 

 

2TH 

) 

, (11c) 

ℓ=0 m=−ℓ 

∞
o + o 

+ o 

( 

ℓ   

+ o 

( 

r 

R
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where TH is the Hawking temperature of the black hole (1), and oin/up is the classical value of 
O when calculated for a particular scalar field mode. All the unrenormalized expectation values 
involve sums over the angular momentum quantum numbers ℓ and m, and integrals over positive 
frequency ω > 0. 

We interpret the mode sums in (11) as follows. The Boulware state |B⟩ contains no particles 
in either the “in” or the “up” modes, as seen by a static observer far from the black hole. 
In contrast, the Hartle-Hawking state |H⟩ contains a thermal distribution of particles in both 
the “in” and the “up” modes, at temperature TH. Note that the frequency ω of each mode 
appears in the thermal factor in the mode sum. Finally, the Unruh state |U⟩ is devoid of “in” 
mode particles, but contains a thermal flux of particles in the “up” modes, corresponding to the 
outgoing Hawking radiation of the black hole. 

 
2. Neutral scalar field on Kerr black hole 
Having outlined the construction of the standard quantum states for a neutral scalar field on a 
static Schwarzschild black hole, we next consider a neutral scalar field on a rotating Kerr black 
hole, having metric 

 

ds2 = −∆ 
dt − a sin2 θ dφ

 2 
+ 

Σ 
dr2 + Σ dθ2 + 

sin θ  
r2 + a2

 
dφ − a dt

 2 
, (12a) 

 

where the functions ∆(r) and Σ(r) are given by 
 

∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 θ, (12b) 

and M is the mass of the black hole, with a the spin parameter. 

2.1. Neutral scalar field modes 

The neutral scalar field equation on the background (12) has mode solutions of the form 
 

1 ϕ (t, r, θ, φ) = 1 
e−iωteimφS 

 
(cos θ)R 

 
(r), (13) 

ωℓm 
N (r2 + a2) 

1

 

ωℓm ωℓm 

 

where N is a normalization constant, Sωℓm(cos θ) is a spheroidal harmonic and the angular 
quantum numbers ℓ, m are as in the Schwarzschild case. The radial function Rωℓm(r) again 
satisfies a Schrödinger-like equation 

 

d2 

dr2 
+ Vωℓm(r) 

 
Rωℓm(r) = 0, (14) 

 

where the “tortoise” coordinate r∗ is now defined by 

dr∗ 

dr 

r2 + a2 
= 

∆ 

 
. (15) 

 

Close to the event horizon at r = rh, r∗ → −∞, and far from the black hole (r, r∗ → ∞), the 
potential Vωℓm(r) takes the form 

 

 

Vωℓm(r) = 
ω2 = (ω − mΩ )2 as r → −∞, 

ω2 as r∗ → ∞, 
(16)

 
 

where ΩH is the angular speed of the event horizon. 
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1A 2

up 1   

ℓ

 
 

(r) ∼ ωℓm 

 

 

At infinity, the potential approaches ω2 as in the Schwarzschild case, and therefore the natural 
frequency with respect to the Schwarzschild-like time coordinate t far from the black hole is 
simply ω. Close to the horizon, however, the potential approaches ω2 and we therefore have a 
frequency shift, with the natural frequency of field modes close to the horizon being ω rather 
than ω. This can be seen in the form of the “in” and “up” modes in the asymptotic regions: 

 

Rin  (r) ∼ 
in 
ωℓm e

−iω~r∗ r∗ → −∞, 
 

(17a) 
−iωr∗ in ωℓm eiωr∗ r∗ → ∞, 

up 
� 

eiω~r∗ + Aup 

 

e−iω~r∗ r∗ → −∞, 

 

where Ain/up and Bin/up are complex constants. This is our first indication that the canonical 
ωℓm ωℓm 

quantization of a neutral scalar field on a Kerr black hole is more complicated than on 
Schwarzschild space-time. In particular, the “in” and “up” modes have different natural 
frequencies. Since the “in” modes originate at past null infinity, the natural frequency for 
these modes is ω, the frequency far from the black hole. In contrast, since the “up” modes 
originate close to the past event horizon, the natural frequency for these modes is ω. 

There is a further complication. The Wronskian of any two linearly independent solutions 
of the radial equation (14) is a constant, and this can be used to derive the following relation 
between the complex constants appearing in the asymptotic form of the “in” modes: 

ω
 

1 − 1Ain 12
 

= ω 1Bin 1 . (18) 
 

From this, it is clear that 
 
 

in 
ωℓm 

1 > 1 if ωω  < 0. (19) 
Therefore, an “in” mode with ωω < 0 has a reflected part at future null infinity Ain eiωr∗ which 

has greater amplitude than the
 
incident part e−iωr∗ . This is the phenomenon  

ωℓm 
erradiance 

of sup 
[9], and results from the wave extracting rotational energy from the black hole. Similarly, there 

2 

are superradiant “up” modes with 1Aωℓm > 1 if ωω < 0. 
 

2.2. Unruh state on Kerr 

To see the effect of superradiance on quantum states for the neutral scalar field, one can proceed 
with canonical quantization as outlined in Section 1. The Unruh state is constructed by taking 
“in” modes to have positive frequency with respect to Schwarzschild-like time t far from the black 
hole (that is, ω > 0), while the “up” modes have positive frequency with respect to Kruskal 
time T near the event horizon. The resulting unrenormalized expectation values are [10] ⟨U|Ô|U⟩ = 

L
 L ∞  

dω oin 

 

∞ 
+ dω oup coth 

( 
ω 
 

) 

. (20) 

ℓ=0 m=−ℓ 0 

ωℓm 
0 

ωℓm 
 

2TH 
 

Note that the integral over the frequency of the “in” modes corresponds to positive frequency 
for ω > 0 while the integral over the frequency of the “up” modes is positive frequency for 
ω > 0, so that the two sets of modes are integrated over their natural frequencies. It can also be 
seen that the thermal factor for the “up” modes involves their natural frequency ω. As in the 
Schwarzschild case, the Unruh state contains an outgoing flux of thermal Hawking radiation in 
the “up” modes. 

ωℓm 

ωℓm 

∞ 

R up (17b) 
Bωℓm e

iωr∗ r∗ → ∞, 
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ℓ
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+
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2.3. Boulware state on Kerr 

Considering next the Boulware state, the analogue of (11a) for the neutral scalar field on Kerr 
space-time is ⟨B|Ô|B⟩ = 

L
 L ∞ 

dω oin 
∞ 

+ dω oup 

l 

, (21) 

ℓ=0 m=−ℓ 0 

ωℓm 
0 

ωℓm 

which results from defining positive frequency to be ω > 0 for the “in” modes and ω > 0 for the 
“up” modes. At first glance, it appears that this state is devoid of particles in the “in” and “up” 
modes. However, evaluation of the expectation value ⟨B|Tˆr |B⟩ [11] reveals that the state |B⟩ in 
fact contains an outgoing flux of particles at future null infinity, arising from the superradiant 
modes with ωω < 0. This is the Unruh-Starobinskii effect [11, 12], the quantum analogue of 
classical superradiance. 

 
2.4. Hartle-Hawking state on Kerr 

Finally in this section, we consider the question of the analogue of the Hartle-Hawking state 
|H⟩ on Kerr? For a neutral scalar field, the Kay-Wald theorem [13, 14] states that there is no 
thermal equilibrium state on Kerr which is regular everywhere on and outside the event horizon 
and respects the underlying symmetries of the space-time. In other words, there is no direct 
analogue of the Hartle-Hawking state for a neutral quantum scalar field on Kerr space-time. A 
natural question is whether there are nonetheless states on Kerr which possess some (but not 
all) of the properties we expect for a “Hartle-Hawking”-like state. 

There are two such states in the literature. The first [15] (which we call the |CCH⟩ state), 
has a thermal distribution of particles in both the “in” and the “up” modes, with the natural 
frequencies of each set of modes appearing in the thermal factors, giving the unrenormalized 
expectation values [15]: ⟨CCH|Ô|CCH⟩ = 

L
 L ∞  

dω oin coth 

( 
ω

 
)  ∞  

dω oup coth 

( 
ω 
 

)l 

. (22) 

ℓ=0 m=−ℓ 0 

ωℓm 
 

2TH 0 
ωℓm 

 

2TH 
 

This state is regular everywhere outside the event horizon, but does not represent an equilibrium 
state [10]. This may be understood from the fact that the “in” and “up” modes have different 
thermal factors. 

An alternative state [16] (which we call the |FT⟩ state) may be defined, in which the “in” and 
“up” modes have the same thermal factors. The resulting unrenormalized expectation values 
are [16] ⟨FT|Ô|FT⟩ = 

L
 L ∞  

dω oin coth 

( 
ω 
 
)  ∞  

dω oup coth 

( 
ω 
 

)l 

. (23) 

ℓ=0 m=−ℓ 0 

ωℓm 
 

2TH 0 
ωℓm 

 

2TH 

 

This state does potentially define an equilibrium state. However, closer inspection [10] reveals 
that in fact this state is divergent everywhere except on the axis of rotation of the black hole. 

 
2.5. Summary 

This brief outline has revealed some subtleties in the definition of quantum states for a neutral 
scalar field on a Kerr black hole background. In particular, there is a frequency shift in the 
field modes at the horizon relative to infinity, which results in the “in” and “up” modes having 
different natural frequencies and the classical phenomenon of superradiance. The construction 
of the Unruh state carries over from the Schwarzschild case without difficulty, since this treats 
the “in” and “up” modes differently. However, there are complications for both the Boulware 

∞ 

∞ 

∞ 
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)

r

 
 

∗

 

and Hartle-Hawking states. The Kerr equivalent of the Boulware state is no longer empty at 
future null infinity, but contains an outgoing flux of particles in the superradiant modes. The 
Hartle-Hawking state is more problematic. There is no state which has all the properties we 
would wish a Hartle-Hawking state to have [13, 14]. In the literature there are two candidate 
“Hartle-Hawking”-like states [15, 16]. The first [15] has attractive regularity properties but is 
not an equilibrium state, while the second [16] is potentially an equilibrium state but fails to be 
regular almost everywhere outside the event horizon. 

 
3. Charged scalar field on Reissner-Nordström black hole 
We now turn to the main focus of this report, the quantization of a charged scalar field on a 
Reissner-Nordstr öm (RN) black hole. This section constitutes an outline of the results in [17, 18] 
to which the reader is referred for further details. 

 
3.1. Charged scalar field on RN 

We consider the RN metric 

 
ds2 = − 1 − 

2M 

r 

Q2 

+ 
r2

 

 
dt2 + 1 − 

2M 

r 

Q2  −1 

+ 
r2

 

 
dr2 + r2 dθ2 + r2 sin2 θ dφ2, (24) 

 

where M is the mass and Q the charge of the black hole. We study a massless charged scalar 
field satisfying the field equation 

DµDµΦ = 0, (25) 

where Dµ = ∇µ − iqAµ is the covariant derivative, q the scalar field charge and Aµ the 
electromagnetic potential, whose only nonzero component is 

 

Q 
A0 = − 

r 
. (26) 

The mode solutions of the charged scalar field equation again take the form (6), with the radial 

function Rωℓ(r) satisfying a Schrödinger-like equation (7), although the “tortoise” coordinate r∗ 
is now given by 

dr∗ 
= 

1 . (27) 
dr 1 − 2M + Q

2
 

r r2 

The potential Vωℓ(r) is not the same as in the Schwarzschild case, and depends on the charges 
of the black hole and scalar field. In the asymptotic regions r∗ → ±∞ its behaviour is 

Vωℓ(r) = 

  
ω 2 =

  
ω − qQ

 2 
as r → −∞, (28) 

ω2 as r∗ → ∞, 

where r+ is the event horizon radius. We see that, as in the Kerr case, there is a frequency shift 
at the event horizon relative to infinity. 

The “in” and “up” modes take the form (17) in the asymptotic regions, but with ω defined by 
(28) rather than (16). For modes with ωω < 0 there is charge superradiance [19], with classical 
waves being amplified upon scattering by the black hole. In this situation the scattered wave is 
extracting electrostatic rather than rotational energy from the black hole. 

Following the discussion in the previous section, we now seek to understand the effect of 
charge superradiance on the construction of the standard quantum states for a charged scalar 
field on an RN black hole, again considering unrenormalized expectation values. The observables 

) ( ( 
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2

--- 

4

ℓ

 

ℓ up up 2

T

     

ℓ up up 2

     

2
ρ ρ ρ ρ

 ωℓ  −ωℓ KU = 
64π3 

dω (2ℓ + 1) ω  
ω  

 
 ω~ 

   − 
 ω 
TH 

 ωℓ  −ωℓ LU = 
16π2 ω  

 
 ω~ 

   
+ 

H

ℓ=0 0 exp TH − 1 ω exp  ω 
TH 

 

of interest are the scalar condensate SC, current Jˆµ and stress-energy tensor Tˆµν , given in terms 

of the scalar field operator Φ̂ as follows: 

S---C = 
1 

Φ̂ Φ̂ † + Φ̂ †Φ̂
 
, (29a) 

Jˆµ = 
iq 

16π 

 

Φ̂ †
 

Dµ Φ̂
 

+
 

Dµ Φ̂
 

Φ̂ †  − Φ̂
 

Dµ Φ̂
 † − 

Dµ Φ̂
 † 

Φ̂
l  

, (29b) 

T̂ µν = 
1 
� 

D Φ̂
 † 

D Φ̂ + Dν Φ̂
 

Dµ Φ̂
 † 

+
 

D Φ̂
 † 

D Φ̂ + Dµ Φ̂
 

Dν Φ̂
 † 

− 
1 

g gρσ
  

D Φ̂
 † 

D 

 

Φ̂ + D Φ̂
  

D Φ̂
 † 

+
 

D Φ̂
 † 

D Φ̂ + D Φ̂
  

D Φ̂
 †
l  

. (29c) 

 

We particularly focus on the fluxes of charge K and energy L, which are given by the following 
expectation values of components of the current and stress-energy tensor: ⟨Jˆr ⟩ = − 

K 
, ⟨Tˆr ⟩ = − 

L 
+ 

4πQK 
. (30) 

   

r2 t 
r2 r3 

 

3.2. Unruh state on RN 

We begin our study of quantum states for a charged scalar field on an RN black hole with an 
uncontroversial state, namely the Unruh state. The construction of this state follows that in the 
Kerr case, resulting in the unrenormalized expectation values [18, 20] 

 ̂ 1 L L ∞ in 

 ∞ 
up 1 ω  1 

l
 ⟨U|O|U⟩ = 

2 
 

ℓ=0 m=−ℓ 

dω oωℓm + 
−∞ 

dω oωℓm coth 12T  1 . (31) 

 

The mode sums involve contributions from both positive and negative frequency modes, due to 
the charge of the scalar field. As in the Kerr case, there are no particles in the “in” modes and a 
thermal distribution of particles in the “up” modes, with the frequency ω (the natural frequency 
for the “up” modes) in the thermal factor. The thermal nature is clear from the expressions for 
the fluxes of charge and energy in this state [18, 20]: 

q L ∞ 
 

 

 

  

 
1B 1 

 

 

1B 1  
 

   

1 L ∞ 
 

 

 

 
1B 1 

 

1B 1  
 

 

where for negative frequency modes the term in the thermal factor is 
 

 

ω = ω + 
qQ 

. (33) 
r+ 

 

The fluxes (32) contain contributions from both positive and negative frequency modes. For 
positive frequency modes, there is thermal emission with an effective chemical potential qQ/r+ 
[1, 20]. The sign of the effective chemical potential is reversed for negative frequency modes. 

ℓ=0 0 ex − ω ex

∞ 

µν σ σ σ σ 

, (32a) − 1 

2 dω (2ℓ + 1) ω , (32b) − 1 

µ ν ν µ 

−∞ 
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ℓ

∞
r+ 

∞
r+ 

ℓ

∞

12T 

 

H

 

3.3. Boulware state on RN 

We now turn to the construction of a “Boulware”-like state for a charged scalar field on RN 
space-time. We quantize the “in” and “up” modes with respect to their natural frequencies, 
defining positive frequency to be ω > 0 for the “in” modes and ω > 0 for the “up” modes. We 
denote the resulting vacuum state |B1⟩. The construction gives the following unrenormalized 
expectation values [18] ⟨B |Ô |B ⟩ = 

1 L
 L ∞  

dω oin 

 

∞ 
+ dω oup 

l 

. (34) 
1 1 

2
 
ℓ=0 m=−ℓ −∞ 

ωℓm 

−∞ 
ωℓm 

 

As in the Kerr case, this state is not empty at future null infinity. There is an outgoing flux of 
charge and energy in the superradiant “up” modes [17]: 

q L  max{ qQ ,0} ω 1 
up

12 

KB1 
= 

64π3 

 
 

ℓ=0 

 
min{ qQ ,0} 

r+ 

dω 
|ω | 

(2ℓ + 1) 1Bωℓ 
1 , (35a) 

1 L  max{ qQ ,0} ω2 1 
up

12 

LB1 
= 

16π2 

 
 

ℓ=0 

 
min{ qQ ,0} 

r+ 

dω 
|ω | 

(2ℓ + 1) 1Bωℓ 
1 . (35b) 

 

The question is then whether it is possible to construct a state which is as empty as possible 
at both past and future null infinity. Such a state, denoted |B⟩, is constructed in [18], using 
creation and annihilation operators which satisfy nonstandard commutation relations (see [18] 
for details). As far as unrenormalized expectation values are concerned, the superradiant “up” 
modes make a contribution which has the opposite sign to that in (34) [18]: 

 ̂ 1 L L   ∞
  

in up 

 
max{0, qQ } r+ 

up   ⟨B|O|B⟩ = dω 
2 

ℓ=0 m=−ℓ 

oωℓm + oωℓm  − 2 
 

min{0, qQ } 
r+ 

dω oωℓm
 . (36) 

 

The fluxes of charge and energy in this state vanish: 
 

KB = 0, LB = 0, (37) 
 

and therefore the state |B⟩ is as empty as possible at both past and future null infinity. 
As with the Boulware state on Schwarzschild space-time, the state |B⟩ diverges on the event 

horizon of the RN black hole. It is argued in [10] that there is no vacuum state for a neutral 
quantum scalar field on Kerr space-time which is as empty as possible at both past and future 
null infinity. This appears to also be the case for a charged quantum scalar field on RN space- 
time, since the “Boulware”-like state |B⟩ is not a conventional vacuum state, as its construction 
relies on nonstandard commutation relations [18]. 

 
3.4. Hartle-Hawking state on RN 

Finally we consider the construction of an analogue of the Hartle-Hawking state for a charged 
quantum scalar field on an RN black hole. Following our discussion of “Hartle-Hawking”-like 
states on Kerr space-time, we begin with a state |H1⟩, which is the analogue of the |CCH⟩ state 
on Kerr. Unrenormalized expectation values in this state take the form [18] 

 ̂
L L 

  ∞ 
in 1 ω 1 

 ∞ 
up 1 ω  1 

l
 ⟨H1|O|H1⟩ =  

ℓ=0 m=−ℓ 

dω oωℓm coth 
−∞ H 

dω oωℓm coth 12T  1 . (38) 

∞ 

∞   

ℓ 

+ 

−∞ 

1 
−∞ 
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ωℓ 1B 

∞
 

ωℓ 
1B 

∞

∞
 

1 1

∞

1 1

 

= KU − ω  
1Bin 

1 
− 1

= LU − − 1
 
 ω  

1Bin 

1 
+ 1

r+ 
0

min r+ 
0

exp 1 ω~ 1 − 1 

H H

1
ϕ 

2

exp  ω 
TH 

 

Both the “in” and “up” modes contain a thermal distribution of particles at the Hawking 
temperature TH, however the frequencies in the thermal factors are different. The “in” modes 
are thermalized with respect to their natural frequency ω, while the “up” modes are thermalized 
with respect to their natural frequency ω. 

As might be expected, the state |H1⟩ is not an equilibrium state. The fluxes of charge and 
energy in this state are [18]: 

q L  ∞ 
 

 

 

 
  

 

(2ℓ + 1) ω2 
 

  

 
1 1

 
 

 

 

12 1 1 12
l 

1 L  ∞ 
 

 

 
  

(2ℓ + 1) ω2 
 

 
1 1

 
 

 

12 1 1 12
l 

 

where KU and LU are, respectively, the fluxes of charge and energy in the Unruh state (32). In 
the “up” modes, the fluxes are the same as those for the Unruh state |U⟩, since the thermalization 
of the “up” modes is the same in these two states. The state |H1⟩ has additional thermal fluxes 
for the “in” modes, with the thermal factor containing the natural frequency ω for these modes. 

Again following the constructions in the Kerr case, our second “Hartle-Hawking”-like state, 
|H2⟩, has identical thermal factors for both the “in” and “up” modes, with unrenormalized 
expectation values given by [18] 

 ̂
L L 

  ∞ 
in 1 ω  1 

 ∞ 
up 1 ω  1 

l
 ⟨H2|O|H2⟩ =  

ℓ=0 m=−ℓ 
dω oωℓm coth 12T  1 dω oωℓm coth 12T  1 . (40) 

 

The state |H2⟩ is the analogue, for a charged quantum scalar field on an RN black hole, of the 
state |FT⟩ for a neutral quantum scalar field on a Kerr black hole. 

Unlike the state |FT⟩ on Kerr, the state |H2⟩ is not an equilibrium state. It has nonzero 
fluxes of charge and energy in the superradiant “in” modes: 

q L  max
{ 

qQ ,0
}
 
 

|ω| 1 in 12 1 ω  1 
KH2 

= 
64π3 

{ 
qQ 

 

 

} dω 
ω 

(2ℓ + 1) 1Bωℓ1 coth 
2T 

, (41a) 

1 L  max
{ 

qQ ,0
}
 1 in 12 1 ω  1 

LH2 
= 

16π2 
{ 

qQ 

  

} dω |ω | (2ℓ + 1) 1Bωℓ1 coth 
2T 

. (41b) 

 

In [18], the properties of the state |H2⟩ are studied by considering the differences in expectation 
values between this state and the uncontroversial Unruh state |U⟩. The differences in the 
expectation values of the current and stress-energy tensor are regular everywhere outside the 
event horizon. Since it is anticipated that the Unruh state |U⟩ is also regular everywhere outside 
the event horizon, this may lead us to deduce that the state |H2⟩ is also regular everywhere 
outside the event horizon. However, there is a problem when we consider the difference in 
expectation values of the scalar condensate: 

⟨H2|S---C|H2⟩ − ⟨U|S---C|U⟩ = 
L
 

 

∞ 

dω 
 

 

 
1 in 

1 1 
 

 

1 . (42) 

 

The integrand in (42) has a pole when ω = 0, and the integral is not convergent. Given the 
expected regularity of the Unruh state |U⟩, we infer that the state |H2⟩ is divergent everywhere. 

1 64π3 ℓ=0 0 ω ex

1 16π2 ℓ=0 0

ℓ=0 

−∞ 
T

ℓ 

+ 

r+ 

r+ 

∞ ℓ 

KH dω 
 ω 
TH − 1 ω 

in 
−ωℓ , (39a) 

LH dω  ω
in 
−ωℓ , (39b) 

ℓ=0 min H 

H 

ℓ=0 m=−ℓ 
ωℓm 

−∞ −∞ 

L  
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12T 

∞ ℓ 2

  ~     

 

 

dω  ωℓ
m 

ω 

−ωℓm 

ω 
TH 

 , (45)

 1

ℓ=0 m=−ℓ 0 exp 

 

This situation is similar to that for the state |FT⟩ on Kerr, whose divergent nature is revealed 
by considering the vacuum polarization (the scalar condensate for a neutral scalar field) [10]. 

Thus far we have postulated two “Hartle-Hawking”-like states: the first, |H1⟩, is regular 
everywhere outside the event horizon but is not an equilibrium state; the second, |H2⟩, is also 
not an equilibrium state but is divergent everywhere outside the event horizon. In [18], a third 
potential “Hartle-Hawking”-like state, |H⟩, is constructed. Like the state |B⟩, the construction 
of the state |H⟩ relies on the use of creation and annihilation operators satisfying nonstandard 
commutation relations. This has the effect of reversing the sign of the contribution of the 
superradiant “in” modes to unrenormalized expectation values, compared to those in the state 
|H2⟩, yielding: 

 

 ̂ 1 L L ∞  in up 1 ω  1 ⟨H|O|H⟩ = 
2 

 
ℓ=0 m=−ℓ 

dω oωℓm + oωℓm 
−∞ 

coth 
2TH 

max{0, qQ } r+ in 
1 ω  1  −2 

min{0, qQ } 
r+ 

dω oωℓm coth 
1 

 . (43) 

 

Unlike the states |H1⟩ and |H2⟩, our new state |H⟩ is an equilibrium state, with vanishing fluxes 
of both charge and energy [18]: 

KH = 0, LH = 0. (44) 

This is one of the properties we were seeking. The other is regularity everywhere outside the 
event horizon. 

Based on our experience with the states |H1⟩ and |H2⟩, the key quantity to examine is the 
scalar condensate. We find the following expression for the difference in expectation values of 
the scalar condensate in the state |H⟩ and the Unruh state: 

L L  ∞ 

 

 
1ϕin  1 

 

1ϕin 1  
 

 

  

  

 

where ω is given by (28) and ω by (33). This clearly has a thermal distribution of particles in 
the “in” modes, with the chemical potential changing signs for the negative frequency modes 
relative to the positive frequency modes (compare (32) for the fluxes in the “up” modes in the 
Unruh state). Each integral in (45) has a pole in the denominator when either ω = 0 or ω = 0. 
However, unlike the poles arising in the integrand in (42), the Cauchy principal values of the 
integrals in (45) exist, leading to a regular scalar condensate expectation value in the |H⟩ state 
[18]. Further numerical investigations [18] reveal that the differences in expectation values for 
the scalar condensate, current and stress-energy tensor between the state |H⟩ and the Unruh 
state are all regular everywhere outside the event horizon. We therefore deduce that the state 
|H⟩ is, like the Unruh state, regular everywhere outside the event horizon. 

 
4. Conclusions 
The standard Unruh [2], Boulware [3] and Hartle-Hawking [4] states for quantum fields on a 
Schwarzschild black hole were constructed in the 1970s and since then have been extensively 
studied. Extending these definitions to more general black holes has proven to be nontrivial. On 
a rotating Kerr black hole, for a neutral scalar field there is no Hartle-Hawking state [13, 14], and 
attempts to define a state with some (but not all) of the properties of a Hartle-Hawking state 
result in either a state [15] which is regular outside the event horizon but not an equilibrium 
state, or an equilibrium state [16] which is divergent almost everywhere [10]. A key property 

− ex − 

∞ 

  

2 ⟨H|S---C|H⟩ − ⟨U|S---C|U⟩ = + 

H 
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of bosonic quantum fields on Kerr space-time is the classical phenomenon of superradiance [9], 
by which an incident wave is amplified upon scattering by the black hole. In this note we have 
described superradiance as resulting from a frequency shift in scalar field modes at the event 
horizon relative to infinity. This frequency shift complicates the construction of quantum states 
via canonical quantization, since the first step is to split the field modes into “positive” and 
“negative” frequencies. 

A frequency shift, and consequent superradiance, also occurs for a charged scalar field on a 
Reissner-Nordstr öm black hole. In analogy with the Kerr case, we have found that the definition 
of the standard quantum states in this set-up is also complicated by the superradiant modes. 
As well as analogues of the “Hartle-Hawking”-like states [15, 16] discussed above for a neutral 
scalar field on Kerr, we have postulated two new states, |B⟩ and |H⟩. The state |B⟩ is as empty 
as possible at both past and future null infinity, and is analogous to the Boulware state on 
Schwarzschild. The state |H⟩ is the analogue of the Hartle-Hawking state on Schwarzschild 
— it is a thermal equilibrium state and appears to be regular everywhere outside the event 
horizon. However, we anticipate that a Kay-Wald-like theorem [13, 14] will still hold for a 
charged scalar field on Reissner-Nordstr öm space-time, since the construction of both the states 
|B⟩ and |H⟩ relies on using creation and annihilation operators which do not satisfy the standard 
commutation relations (see [18] for details). Therefore, it is likely that these states do not satisfy 
the assumptions of a Kay-Wald-like theorem [21]. 
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