529 research outputs found
Surface water floods in Switzerland: what insurance claim records tell us about the damage in space and time
Surface water floods (SWFs) have received increasing attention in the recent
years. Nevertheless, we still know relatively little about where, when and
why such floods occur and cause damage, largely due to a lack of data but
to some degree also because of terminological ambiguities. Therefore, in a
preparatory step, we summarize related terms and identify the need for
unequivocal terminology across disciplines and international boundaries in
order to bring the science together. Thereafter, we introduce a large
(n = 63 117), long (10–33 years) and representative
(48 % of all Swiss buildings covered) data set of spatially explicit
Swiss insurance flood claims. Based on registered flood damage to buildings,
the main aims of this study are twofold: First, we introduce a method to
differentiate damage caused by SWFs and fluvial floods based on the
geographical location of each damaged object in relation to flood hazard maps
and the hydrological network. Second, we analyze the data with respect to
their spatial and temporal distributions aimed at quantitatively answering
the fundamental questions of how relevant SWF damage really is, as well as
where and when it occurs in space and time.
This study reveals that SWFs are responsible for at least 45 % of the
flood damage to buildings and 23 % of the associated direct tangible
losses, whereas lower losses per claim are responsible for the lower loss
share. The Swiss lowlands are affected more heavily by SWFs than the alpine
regions. At the same time, the results show that the damage claims and
associated losses are not evenly distributed within each region either.
Damage caused by SWFs occurs by far most frequently in summer in almost all
regions. The normalized SWF damage of all regions shows no significant upward
trend between 1993 and 2013. We conclude that SWFs are in fact a highly
relevant process in Switzerland that should receive similar attention like
fluvial flood hazards. Moreover, as SWF damage almost always coincides with
fluvial flood damage, we suggest considering SWFs, like fluvial floods, as integrated processes of
our catchments
Acceleration of small astrophysical grains due to charge fluctuations
We discuss a novel mechanism of dust acceleration which may dominate for
particles smaller than m. The acceleration is caused by their
direct electrostatic interactions arising from fluctuations of grain charges.
The energy source for the acceleration are the irreversible plasma processes
occurring on the grain surfaces. We show that this mechanism of
charge-fluctuation-induced acceleration likely affects the rate of grain
coagulation and shattering of the population of small grains.Comment: 8 pages, 2 figures, revised version, submitted to Astrophysical
Journa
Perspectives on Interstellar Dust Inside and Outside of the Heliosphere
Measurements by dust detectors on interplanetary spacecraft appear to
indicate a substantial flux of interstellar particles with masses exceeding
10^{-12}gram. The reported abundance of these massive grains cannot be typical
of interstellar gas: it is incompatible with both interstellar elemental
abundances and the observed extinction properties of the interstellar dust
population. We discuss the likelihood that the Solar System is by chance
located near an unusual concentration of massive grains and conclude that this
is unlikely, unless dynamical processes in the ISM are responsible for such
concentrations. Radiation pressure might conceivably drive large grains into
"magnetic valleys". If the influx direction of interstellar gas and dust is
varying on a ~10 yr timescale, as suggested by some observations, this would
have dramatic implications for the small-scale structure of the interstellar
medium.Comment: 13 pages. To appear in Space Science Review
Recommended from our members
A hydroquinone-specific screening system for directed P450 evolution
The direct hydroxylation of benzene to hydroquinone (HQ) under mild reaction conditions is a challenging task for chemical catalysts. Cytochrome P450 (CYP) monooxygenases are known to catalyze the oxidation of a variety of aromatic compounds with atmospheric dioxygen. Protein engineering campaigns led to the identification of novel P450 variants, which yielded improvements in respect to activity, specificity, and stability. An effective screening strategy is crucial for the identification of improved enzymes with desired characteristics in large mutant libraries. Here, we report a first screening system designed for screening of P450 variants capable to produce hydroquinones. The hydroquinone quantification assay is based on the interaction of 4-nitrophenylacetonitrile (NpCN) with hydroquinones under alkaline conditions. In the 96-well plate format, a low detection limit (5 μM) and a broad linear detection range (5 to 250 μM) were obtained. The NpCN assay can be used for the quantification of dihydroxylated aromatic compounds such as hydroquinones, catechols, and benzoquinones. We chose the hydroxylation of pseudocumene by P450 BM3 as a target reaction and screened for improved trimethylhydroquinone (TMHQ) formation. The new P450 BM3 variant AW2 (R47Q, Y51F, I401M, A330P) was identified by screening a saturation mutagenesis library of amino acid position A330 with the NpCN assay. In summary, a 70-fold improved TMHQ formation was achieved with P450 BM3 AW2 when compared to the wild type (WT) and a 1.8-fold improved TMHQ formation compared to the recently reported P450 BM3 M3 (R47S, Y51W, A330F, I401M). © 2018, The Author(s)
Exact results for hydrogen recombination on dust grain surfaces
The recombination of hydrogen in the interstellar medium, taking place on
surfaces of microscopic dust grains, is an essential process in the evolution
of chemical complexity in interstellar clouds. The H_2 formation process has
been studied theoretically, and in recent years also by laboratory experiments.
The experimental results were analyzed using a rate equation model. The
parameters of the surface, that are relevant to H_2 formation, were obtained
and used in order to calculate the recombination rate under interstellar
conditions. However, it turned out that due to the microscopic size of the dust
grains and the low density of H atoms, the rate equations may not always apply.
A master equation approach that provides a good description of the H_2
formation process was proposed. It takes into account both the discrete nature
of the H atoms and the fluctuations in the number of atoms on a grain. In this
paper we present a comprehensive analysis of the H_2 formation process, under
steady state conditions, using an exact solution of the master equation. This
solution provides an exact result for the hydrogen recombination rate and its
dependence on the flux, the surface temperature and the grain size. The results
are compared with those obtained from the rate equations. The relevant length
scales in the problem are identified and the parameter space is divided into
two domains. One domain, characterized by first order kinetics, exhibits high
efficiency of H_2 formation. In the other domain, characterized by second order
kinetics, the efficiency of H_2 formation is low. In each of these domains we
identify the range of parameters in which, the rate equations do not account
correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure
Electron-Ion Recombination on Grains and Polycyclic Aromatic Hydrocarbons
With the high-resolution spectroscopy now available in the optical and
satellite UV, it is possible to determine the neutral/ionized column density
ratios for several different elements in a single cloud. Assuming ionization
equilibrium for each element, one can make several independent determinations
of the electron density. For the clouds for which such an analysis has been
carried out, these different estimates disagree by large factors, suggesting
that some process (or processes) besides photoionization and radiative
recombination might play an important role in the ionization balance. One
candidate process is collisions of ions with dust grains.
Making use of recent work quantifying the abundances of polycyclic aromatic
hydrocarbon molecules and other grains in the interstellar medium, as well as
recent models for grain charging, we estimate the grain-assisted ion
recombination rates for several astrophysically important elements. We find
that these rates are comparable to the rates for radiative recombination for
conditions typical of the cold neutral medium. Including grain-assisted ion
recombination in the ionization equilibrium analysis leads to increased
consistency in the various electron density estimates for the gas along the
line of sight to 23 Orionis. However, not all of the discrepancies can be
eliminated in this way; we speculate on some other processes that might play a
role. We also note that grain-assisted recombination of H+ and He+ leads to
significantly lower electron fractions than usually assumed for the cold
neutral medium.Comment: LaTeX(12 pages, 8 figures, uses emulateapj5.sty, apjfonts.sty);
submitted to ApJ; corrected typo
Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation
We use observations of total particle number concentration at 36 worldwide sites and a global aerosol model to quantify the primary and secondary sources of particle number. We show that emissions of primary particles can reasonably reproduce the spatial pattern of observed condensation nuclei (CN) (R2=0.51) but fail to explain the observed seasonal cycle at many sites (R2=0.1). The modeled CN concentration in the free troposphere is biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles is included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental boundary layer (BL) are also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles is increased or an empirical BL particle formation mechanism based on sulfuric acid is used. We find that the seasonal CN cycle observed at continental BL sites is better simulated by including a BL particle formation mechanism (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). Using sensitivity tests we derive optimum rate coefficients for this nucleation mechanism, which agree with values derived from detailed case studies at individual sites
Recommended from our members
Accuracy and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE
Accretion-ejection connection in the young brown dwarf candidate ISO-Cha1 217
As the number of observed brown dwarf outflows is growing it is important to
investigate how these outflows compare to the well studied jets from young
stellar objects. A key point of comparison is the relationship between outflow
and accretion activity and in particular the ratio between the mass outflow and
accretion rates (/). The brown dwarf candidate
ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric
study of brown dwarfs, to be driving an asymmetric outflow with the
blue-shifted lobe having a position angle of 20. The aim here
is to further investigate the properties of ISO-ChaI 217, the morphology and
kinematics of its outflow, and to better constrain
(/). The outflow is spatially resolved in the
lines and is detected out to 1\farcs6
in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry
between the two lobes is confirmed although the velocity asymmetry is less
pronounced with respect to our previous study. Using thirteen different
accretion tracers we measure log() [M/yr]= -10.6
0.4. As it was not possible to measure the effect of extinction on the ISO-ChaI
217 outflow was derived for a range of values of A, up to
a value of A = 2.5 mag estimated for the source extinction. The logarithm
of the mass outflow () was estimated in the range -11.7 to -11.1
for both jets combined. Thus / [\Msun/yr] lies
below the maximum value predicted by magneto-centrifugal jet launching models.
Finally, both model fitting of the Balmer decrements and spectro-astrometric
analysis of the H line show that the bulk of the H I emission comes
from the accretion flow.Comment: accepted by Astronomy & Astrophysic
Structure and dynamics in protic ionic liquids: a combined optical Kerr-effect and dielectric relaxation spectroscopy study
The structure and dynamics of ionic liquids (ILs) are unusual due to the strong interactions between the ions and counter ions. These microscopic properties determine the bulk transport properties critical to applications of ILs such as advanced fuel cells. The terahertz dynamics and slower relaxations of simple alkylammonium nitrate protic ionic liquids (PILs) are here studied using femtosecond optical Kerr-effect spectroscopy, dielectric relaxation spectroscopy, and terahertz time-domain spectroscopy. The observed dynamics give insight into more general liquid behaviour while comparison with glass-forming liquids reveals an underlying power-law decay and relaxation rates suggest supramolecular structure and nanoscale segregation
- …