308 research outputs found

    Evidence accumulation in the magnitude system

    Get PDF
    Perceptual interferences in the estimation of quantities (time, space and numbers) have been interpreted as evidence for a common magnitude system. However, if duration estimation has appears sensitive to spatial and numerical interferences, space and number estimation tend to be resilient to temporal manipulations. These observations question the relative contribution of each quantity in the elaboration of a representation in a common mental metric. Here, we elaborated a task in which perceptual evidence accumulated over time for all tested quantities (space, time and number) in order to match the natural requirement for building a duration percept. For this, we used a bisection task. Experimental trials consisted of dynamic dots of different sizes appearing progressively on the screen. Participants were asked to judge the duration, the cumulative surface or the number of dots in the display while the two non-target dimensions varied independently. In a prospective experiment, participants were informed before the trial which dimension was the target; in a retrospective experiment, participants had to attend to all dimensions and were informed only after a given trial which dimension was the target. Surprisingly, we found that duration was resilient to spatial and numerical interferences whereas space and number estimation were affected by time. Specifically, and counter-intuitively, results revealed that longer durations lead to smaller number and space estimates whether participants knew before (prospectively) or after (retrospectively) a given trial which quantity they had to estimate. Altogether, our results support a magnitude system in which perceptual evidence for time, space and numbers integrate following Bayesian cue-combination rules

    Encoding of event timing in the phase of neural oscillations

    Get PDF
    ime perception is a critical component of conscious experience. To be in synchrony with the environment, the brain must deal not only with differences in the speed of light and sound but also with its computational and neural transmission delays. Here, we asked whether the brain could actively compensate for temporal delays by changing its processing time. Specifically, can changes in neural timing or in the phase of neural oscillation index perceived timing? For this, a lag-adaptation paradigm was used to manipulate participants' perceived audiovisual (AV) simultaneity of events while they were recorded with magnetoencephalography (MEG). Desynchronized AV stimuli were presented rhythmically to elicit a robust 1 Hz frequency-tagging of auditory and visual cortical responses. As participants' perception of AV simultaneity shifted, systematic changes in the phase of entrained neural oscillations were observed. This suggests that neural entrainment is not a passive response and that the entrained neural oscillation shifts in time. Crucially, our results indicate that shifts in neural timing in auditory cortices linearly map participants' perceived AV simultaneity. To our knowledge, these results provide the first mechanistic evidence for active neural compensation in the encoding of sensory event timing in support of the emergence of time awareness

    Toward the manipulation of time and space in extended reality: a preliminary study on multimodal Tau and Kappa illusions in the visual-tactile domain

    Get PDF
    In the last few years, Extended reality (XR) has enabled novel forms of sensory experiences and social interplay, which can be hardly experienced in real life. However, the full potential of XR has not been exploited yet, since vision remains the main interaction modality, and the time-and space-modulation of the sense of self-which could open interesting perspectives in several scenarios-is still largely unexplored. To pave the path to a multi-modal manipulation of the sense of time and space in immersive XR, in this work we discuss the preliminary outcomes of the first investigation in the visual-tactile domain of two well known perceptual illusions affecting spatial and temporal perception, i.e. Tau and Kappa effects, respectively. We compared the effects originated from unimodal stimulation (i.e., only visual or tactile) with the same effects induced by convergent bimodal stimulation (i.e., visual and tactile), delivered to the forearm. Results show that both Tau and Kappa effects are affected by the multi-modality of the stimulation, and that the perceptual bias differently affects time-or space-perception based on the modality used for stimulus delivery. Our results, although preliminary, seem to suggest that multimodal perceptual illusions could be a viable solution for time-and space-modulation of the sense of self in immersive XR and advanced social human-robot interaction

    Rapid encoding of task regularities in the human hippocampus guides sensorimotor timing

    Get PDF
    The brain encodes the statistical regularities of the environment in a task-specific yet flexible and generalizable format. Here, we seek to understand this process by bridging two parallel lines of research, one centered on sensorimotor timing, and the other on cognitive mapping in the hippocampal system. By combining functional magnetic resonance imaging (fMRI) with a fast-paced time-to-contact (TTC) estimation task, we found that the hippocampus signaled behavioral feedback received in each trial as well as performance improvements across trials along with reward-processing regions. Critically, it signaled performance improvements independent from the tested intervals, and its activity accounted for the trial-wise regression-to-the-mean biases in TTC estimation. This is in line with the idea that the hippocampus supports the rapid encoding of temporal context even on short time scales in a behavior-dependent manner. Our results emphasize the central role of the hippocampus in statistical learning and position it at the core of a brain-wide network updating sensorimotor representations in real time for flexible behavior

    Altering Time Perception in Virtual Reality through Multimodal Visual-tactile Kappa Effect

    Get PDF
    The perception of time is highly subjective and intertwined with space perception. In a well-known perceptual illusion, called Kappa effect, the distance between consecutive stimuli is modified to induce time distortions in the perceived inter-stimulus interval that are proportional to the distance between the stimuli. However, to the best of our knowledge, this effect has not been characterized and exploited in virtual reality (VR) within a multisensory elicitation framework. This paper investigates the Kappa effect elicited by concurrent visual-tactile stimuli delivered to the forearm, through a multimodal VR interface. This paper compares the outcomes of an experiment in VR with the results of the same experiment performed in the “physical world”, where a multimodal interface was applied to participants' forearm to deliver controlled visual-tactile stimuli. Our results suggest that a multimodal Kappa effect can be elicited both in VR and in the physical world relying on concurrent visual-tactile stimulation. Moreover, our results confirm the existence of a relation between the ability of participants in discriminating the duration of time intervals and the magnitude of the experienced Kappa effect. These outcomes can be exploited to modulate the subjective perception of time in VR, paving the path toward more personalised human-computer interaction

    Time Value of Commercial Product Returns

    Get PDF
    Manufacturers and their distributors must cope with an increased flow of returned products from their customers. The value of commercial product returns, which we define as products returned for any reason within 90 days of sale, now exceeds US $100 billion annually in the US. Although the reverse supply chain of returned products represents a sizeable flow of potentially recoverable assets, only a relatively small fraction of the value is currently extracted by manufacturers; a large proportion of the product value erodes away due to long processing delays. Thus, there are significant opportunities to build competitive advantage from making the appropriate reverse supply chain design choices. In this paper, we present a simple queuing network model that includes the marginal value of time to identify the drivers of reverse supply chain design. We illustrate our approach with specific examples from two companies in different industries and then examine how industry clockspeed generally affects the choice between an efficient and a responsive returns network

    The Search for High-Mass X-ray Binaries in the Phoenix Dwarf Galaxy

    Full text link
    We report on the first X-ray images of the Phoenix dwarf galaxy, taken with \emph{XMM-Newton} in July 2009. This local group dwarf galaxy shares similarities with the Small Magellanic Cloud (SMC) including a burst of star formation \sim50 Myr ago. The SMC has an abundance of High Mass X-ray Binaries (HMXBs) and so we have investigated the possibility of an HMXB population in Phoenix with the intention of furthering the understanding of the HMXB-star formation rate relation. The data from the combined European Photon Imaging Cameras (EPIC) were used to distinguish between different source classes (foreground stars, background galaxies, AGN and supernova remnants) using EPIC hardness ratios and correlations with optical and radio catalogues. Of the 81 X-ray sources in the field of view, six are foreground stars, four are galaxies and one is an AGN. The remaining sources with optical counterparts have log(fXfopt\frac{f_X}{f_{opt}}) consistent with AGN in the local universe. Further investigation of five sources in the field of view suggests they are all background AGN. Their position behind the gas cloud associated with Phoenix makes them a possible tool for further probing the metallicity of this region. We find no evidence for any HMXBs in Phoenix at this time. This rules out the existence of the X-ray persistent supergiant X-ray binary systems. However the transient nature of the Be/X-ray binaries means we cannot rule out a population of these sources but can conclude that it is not extensive.Comment: 13 pages, 4 figures, 4 tables, Accepted for publication in MNRA
    corecore