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Abstract The brain encodes the statistical regularities of the environment in a task-specific 
yet flexible and generalizable format. Here, we seek to understand this process by bridging two 
parallel lines of research, one centered on sensorimotor timing, and the other on cognitive mapping 
in the hippocampal system. By combining functional magnetic resonance imaging (fMRI) with a 
fast-paced time-to-contact (TTC) estimation task, we found that the hippocampus signaled behav-
ioral feedback received in each trial as well as performance improvements across trials along with 
reward-processing regions. Critically, it signaled performance improvements independent from 
the tested intervals, and its activity accounted for the trial-wise regression-to-the-mean biases in 
TTC estimation. This is in line with the idea that the hippocampus supports the rapid encoding of 
temporal context even on short time scales in a behavior-dependent manner. Our results emphasize 
the central role of the hippocampus in statistical learning and position it at the core of a brain-wide 
network updating sensorimotor representations in real time for flexible behavior.

Editor's evaluation
This important work brings ideas about hippocampal learning and involvement in temporal 
processing to a sensorimotor timing task, "time-to-contact estimation", that is not typically consid-
ered to be hippocampus-dependent. The study found that activity in the hippocampus measured 
with fMRI was related to feedback received about the accuracy of timing estimation and to perfor-
mance improvement across trials in a manner not tied to the specific time interval tested. The 
evidence presented for the nature of the involvement of the hippocampus in this task is compelling.

Introduction
When someone throws us a ball, we can anticipate its future trajectory, its speed and the time it will 
reach us. These expectations then inform the motor system to plan an appropriate action to catch 
it. Generating expectations and planning behavior accordingly builds on our ability to learn from 
past experiences and to encode the statistical regularities of the tasks we perform. At the core of 
this ability lies a continuous perception-action loop, initially proposed for sensorimotor systems (e.g. 
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Wolpert et al., 2011), which is now at the heart of many leading theories of brain function including 
active inference (Friston et al., 2016), predictive coding (Huang and Rao, 2011) and reinforcement 
learning (Daw and Dayan, 2014).

Critically, the brain needs to balance three primary objectives to effectively guide behavior in a 
dynamic environment. First, it needs to capture the specific aspects of the task that inform the relevant 
behavior (e.g. the remaining time to catch the ball). Second, it needs to generalize from a limited set 
of examples to novel and noisy situations. This can be achieved by regularizing the currently encoded 
information based on past experiences (e.g. by inferring how fast previous balls flew on average). 
Third, the sensorimotor representations that guide the behavior need to be updated flexibly when-
ever feedback about our actions becomes available (e.g. when we catch or miss the ball), or when task 
demands change (e.g. when someone throws us a frisbee instead). Herein, we refer to these objec-
tives as specificity, regularization, and flexibility. While these are all fundamental principles underlying 
human cognition broadly, how the brain forms and continuously updates sensorimotor representa-
tions that balance these three objectives remains unclear.

Here, we approach this question with a new perspective by bridging two parallel lines of research 
centered on sensorimotor timing and hippocampal-dependent cognitive mapping. Specifically, we 
test how the human hippocampus, an area often implicated in episodic-memory formation (Schiller 
et  al., 2015; Eichenbaum, 2017), may support the flexible updating of sensorimotor representa-
tions in real time and in concert with other regions. Importantly, the hippocampus is not traditionally 
thought to support sensorimotor functions, and its contributions to memory formation are typically 
discussed for longer time scales (hours, days, weeks). Here, however, we characterize in detail the rela-
tionship between hippocampal activity and real-time behavioral performance in a fast-paced timing 
task, which is traditionally believed to be hippocampal-independent. We propose that the capacity of 
the hippocampus to encode statistical regularities of our environment (Doeller et al., 2005; Schapiro 
et al., 2017; Momennejad, 2020) situates it at the core of a brain-wide network balancing specificity 
vs. regularization in real time as the relevant behavior is performed.

An optimal behavioral domain to study these processes is sensorimotor timing (Gershman et al., 
2014; Petter et  al., 2018). This is because prior work suggested that timing estimates indeed 
rely on the statistics of prior experiences (Wolpert et  al., 2011; Jazayeri and Shadlen, 2010; 
Acerbi et al., 2012; Chang and Jazayeri, 2018). Crucially, however, timing estimates are not always 
accurate. Instead, they directly reflect the trade-off between specificity and regularization, which 
is expressed in systematic behavioral biases. Estimated intervals regress towards the mean of the 
distribution of tested intervals (Jazayeri and Shadlen, 2010), a well-known effect that we will refer 
to as the regression effect (Petzschner et al., 2015). The regression effect suggests that the brain 
encodes a probability distribution of possible intervals rather than the exact information obtained 
in each trial (Wolpert et al., 2011). Timing estimates therefore depend not only on the interval 
tested in a trial, but also on the temporal context in which they were encountered (i.e. the intervals 
tested in all other trials). This likely helps to predict future scenarios, to adapt behavior flexibly and 
to generalize to novel or noisy situations (Jazayeri and Shadlen, 2010; Acerbi et al., 2012; Roach 
et al., 2017).

Importantly, the hippocampus proper codes for time and temporal context on various scales 
(Howard, 2017) and it has been shown to process behavioral feedback in decision-making tasks 
(Shohamy and Wagner, 2008), pointing to a role in feedback learning. Moreover, the hippocampal 
formation has been implicated in encoding the latent structure of a task along with the individual 
features that were tested (Kumaran, 2012; Schlichting and Preston, 2015; Schapiro et al., 2017; 
Wikenheiser et al., 2017; Behrens et al., 2018; Schuck and Niv, 2019; Whittington et al., 2020; 
Peer et al., 2021), providing a unified account for its many proposed roles in navigation (Burgess 
et al., 2002), memory (Schiller et al., 2015; Eichenbaum, 2017) and decision making (Kaplan et al., 
2017; Vikbladh et al., 2019). We propose that a central function of the human hippocampus is to 
encode the temporal context of stimuli and behaviors rapidly, and that this process manifests as the 
behavioral regression effect observed in time estimation and other domains (Petzschner et al., 2015). 
This puts the hippocampus at the core of a brain-wide network solving the trade-off between speci-
ficity and regularization for flexible behavior by continuously updating sensorimotor representations 
in a feedback-dependent manner. Using functional magnetic resonance imaging (fMRI) and a senso-
rimotor timing task, we here test this proposal empirically.

https://doi.org/10.7554/eLife.79027
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Results
In the following, we present our experiment and results in four steps. First, we introduce our task, 
which built on the estimation of the time-to-contact (TTC) between a moving fixation target and a 
visual boundary, as well as the behavioral and fMRI measurements we acquired. On a behavioral level, 
we show that participants’ timing estimates systematically regress towards the mean of the tested 
intervals. Second, we demonstrate that anterior hippocampal fMRI activity and functional connectivity 
tracks the behavioral feedback participants received in each trial, revealing a link between hippo-
campal processing and timing-task performance. Third, we show that this hippocampal feedback 
modulation reflects improvements in behavioral performance over trials. We interpret this activity to 
signal the updating of task-relevant sensorimotor representations in real time. Fourth, we show that 
these updating signals in the posterior hippocampus were independent of the specific interval that 
was tested and activity in the anterior hippocampus reflected the magnitude of the behavioral regres-
sion effect in each trial.

Notably, for each of the hippocampal main analyses, we also performed whole-brain voxel-wise 
analyses to uncover the larger brain network at play. We found that in addition to the hippocampus, 
regions typically associated with timing and reward processing signaled sensorimotor updating in our 
task, particularly the striatum. Follow-up analyses further revealed a striking distinction in TTC-specific 
and TTC-independent updating signals between striatal sub-regions. We conclude by discussing the 
potential neural underpinnings of these results and how the hippocampus may contribute to solving 
the trade-off between task specificity and regularization in concert with this larger brain network.

Time-to-contact (TTC) estimation task
We monitored whole-brain activity using fMRI with concurrent eye tracking in 34 participants 
performing a TTC task. This task offered a rich behavioral read-out and required sustained attention 
in every single trial. During scanning, participants visually tracked a fixation target, which moved on 
linear trajectories within a circular boundary. The target moved at one of four possible speed levels 
and in one of 24 possible directions (Figure 1A, similar to Nau et al., 2018a). The sequence of tested 
speeds was counterbalanced across trials. Whenever the target stopped moving, participants esti-
mated when the target would have hit the boundary if it had continued moving. They did so while 
maintaining fixation, and they indicated the estimated TTC by pressing a button. Feedback about 
their performance was provided foveally and instantly with a colored cue. The received feedback 
depended on the timing error, that is the difference between objectively true and estimated TTC 
(Figure  1B), and it comprised three levels reflecting high, middle, and low accuracy (Figure  1C). 
Because timing judgements typically follow the Weber-Fechner law (Rakitin et al., 1998), the feed-
back levels were scaled relative to the ground-truth TTC of each trial. This ensured that participants 
were exposed to approximately the same distribution of feedback at all intervals tested (Figure 1C, 
Figure 1—figure supplement 1B). After a jittered inter-trial interval (ITI), the next trial began and the 
target moved into another direction at a given speed. The tested speeds of the fixation target were 
counterbalanced across trials to ensure a balanced sampling within each scanning run. Because the 
target always stopped moving at the same distance to the boundary, matching the boundary’s retinal 
eccentricity across trials, the different speeds led to four different TTCs: 0.55, 0.65, 0.86, and 1.2 s. 
Each participant performed a total of 768 trials. Please see Materials and methods for more details.

Analyzing the behavioral responses revealed that participants performed the task well and that the 
estimated and true TTCs were tightly correlated (Figure 1B; Spearman’s ‍rho = 0.91, p = 2.2x10−16

‍). 
However, participants’ responses were also systematically biased towards the grand mean of the TTC 
distribution (0.82 s), indicating that shorter durations tended to be overestimated and longer dura-
tions tended to be underestimated. We confirmed this in all participants by examining the slopes of 
linear regression lines fit to the behavioral responses (Figure 1—figure supplement 1D). These slopes 
differed from 1 (veridical performance; Figure 1B, diagonal dashed line; one-tailed one-sample t test, 

‍t(33) = −19.26, p = 2.2x10−16, d = −3.30, CI : [−4.22,−2.47]‍) as well as from 0 (grand mean; Figure 1B, 
horizontal dashed line; one-tailed one-sample t test, ‍t(33) = 21.62, p = 2.2x10−16, d = 3.71, CI : [2.79, 4.72]‍) 
and clustered at 0.5. Moreover, the slopes also correlated positively with behavioral accuracy across 
participants (Figure 1—figure supplement 1E; Spearman’s ‍rho = 0.794, p = 2.1x10−08

‍), consistent with 
previous reports (Cicchini et al., 2012). Notably, the regression effect we observed in behavior has 
been argued to show that timing estimates indeed rely on the latent task regularities that our brain has 

https://doi.org/10.7554/eLife.79027
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encoded (e.g. Jazayeri and Shadlen, 2010; Roach et al., 2017). It may therefore reflect a key behavioral 
adaptation helping to regularize encoded intervals to optimally support both current task performance 
and generalization to future scenarios. In support of this, participants’ regression slopes converged 
over time towards the optimal value of 0.5, that is the slope value between veridical performance and 
the grand mean (Figure 1—figure supplement 1F; linear mixed-effects model with task segment 
as a predictor and participants as the error term, ‍F(1) = 8.172, p = 0.005, ϵ2 = 0.08, CI : [0.01, 0.18]‍), 
and participants’ slope values became more similar (Figure 1—figure supplement 1G; linear regres-
sion with task segment as predictor, ‍F(1) = 6.283, p = 0.046, ϵ2 = 0.43, CI : [0, 1]‍). Consequently, this 
also led to an improvement in task performance over time on group level (i.e. task accuracy and 
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Figure 1. Visual tracking and Time-To-Contact (TTC) estimation task. (A) Task design. In each trial during fMRI 
scanning, participants fixated a target (phase 1), which started moving at one of 4 possible speeds and in one of 
24 possible directions for 10° visual angle (phase 2). After the target stopped moving, participants kept fixating 
and estimated when the fixation target would have hit a boundary 5° visual angle apart (phase 3). After pressing a 
button at the estimated TTC, participants received feedback (phase 4) according to their performance. Feedback 
was scaled relative to target TTC. (B) Task performance. True and estimated TTC were correlated, showing that 
participants performed the task well. However, they overestimated short TTCs and underestimated long TTCs. 
Their estimates regressed towards the grand-mean of the TTC distribution (horizontal dashed line), away from the 
line of equality (diagonal dashed line). (C) Feedback. On average, participants received high-accuracy feedback on 
half of the trials (also see Figure 1—figure supplement 1B, Figure 1—figure supplement 1C). (BC) We plot the 
mean and SEM (black dots and lines) as well as single-participant data as dots (n=34). Feedback levels are color 
coded.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavioral analyses.

Figure supplement 2. Eye tracking analyses.

https://doi.org/10.7554/eLife.79027
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precision increased; Figure 1—figure supplement 1I), and the relationship between accuracy and 
precision became stronger (Figure 1—figure supplement 1H), linear mixed-effect model results for 
accuracy: ‍F(1) = 15.127, p = 1.3x10−4

‍, ‍ϵ2 = 0.06, CI : [0.02, 0.11]‍, precision: ‍F(1) = 20.189, p = 6.1x10−5
‍, 

‍ϵ2 = 0.32, CI : [0.13, 1]‍, accuracy-precision relationship: ‍F(1) = 8.288, p = 0.036, ϵ2 = 0.56, CI : [0, 1]‍, see 
methods for model details.

Behavioral feedback predicts hippocampal activity
Importantly, sensorimotor updating is expected to occur right after the value of the performed action 
became apparent, which is when participants received feedback. As a proxy, we therefore analyzed 
how activity in each voxel reflected the feedback participants received in the previous trial. Using a 
mass-univariate general linear model (GLM), we modeled the three feedback levels with one regressor 
each plus additional nuisance regressors (see Materials and methods for details). The three feedback 
levels (high, medium, and low accuracy) corresponded to small, medium and large timing errors, 
respectively. We then contrasted the beta weights estimated for low-accuracy vs. high-accuracy feed-
back and examined the effects on group-level averaged across runs. We performed both whole-brain 
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Figure 2. Feedback on the previous trial (n-1) modulates network-wide activity and hippocampal connectivity 
in subsequent trials (n). (A) Voxel-wise analysis. Activity in each trial was modeled with a separate regressor as a 
function of feedback received in the previous trial. Insert zooming in on hippocampus added. (B) Independent 
regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus. We plot the beta estimates 
obtained for the contrast between low-accuracy vs. high-accuracy feedback. Negative values indicate that smaller 
errors, and higher-accuracy feedback, led to stronger activity. Depicted are the mean and SEM across participants 
(black dot and line) overlaid on single participant data (coloured dots; n=34). Activity in the anterior hippocampus 
is modulated by feedback received in previous trial. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) 
obtained using a group-level two-tailed one-sample t-test against zero. (C) Feedback-dependent hippocampal 
connectivity. We plot results of a psychophysiological interactions (PPI) analysis conducted using the hippocampal 
peak effects in (A) as a seed for low vs. high-accuracy feedback. (AC) We plot thresholded t-test results at 1 mm 
resolution overlaid on a structural template brain. MNI coordinates added. Hippocampal activity and connectivity 
is modulated by feedback received in the previous trial.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Regions of interest (ROIs).

Figure supplement 2. Current trial effects.

Figure supplement 3. Brain activity reflects feedback received in past trial.

Figure supplement 4. Remaining contrasts from Figure 2A, Figure 2B.

https://doi.org/10.7554/eLife.79027
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voxel-wise analyses as well as regions-of-interest (ROI) analysis for anterior and posterior hippocampus 
separately, for which prior work suggested functional differences with respect to their contributions to 
memory-guided behavior (Poppenk et al., 2013; Strange et al., 2014).

In both our ROI analysis and a voxel-wise analysis, we found that hippocampal activity could 
indeed be predicted by the feedback participants received in the previous trial (Figure  2A, 
Figure  2B). Higher-accuracy feedback resulted in overall stronger activity in the anterior section 
of the hippocampus (Figure 2B, Figure 2—figure supplement 1A; two-tailed one-sample t tests: 
anterior HPC, ‍t(33) = −3.80, p = 5.9x10−4, pfwe = 0.001, d = −0.65, CI : [−1.03,−0.28]‍; posterior HPC, 

‍t(33) = −1.60, p = 0.119, pfwe = 0.237, d = −0.27, CI : [−0.62, 0.07]‍). Moreover, the voxel-wise analysis 
revealed feedback-related activity also in the thalamus and the striatum (Figure 2A), and in the hippo-
campus when the feedback of the current trial was modeled (Figure 2—figure supplement 2A).

Note that these results were robust even when fewer nuisance regressors were included to 
control for model over-specification (Figure  2—figure supplement 3B; two-tailed one-sample t 
tests: anterior HPC, ‍t(33) = −3.65, p = 8.9x10−4, pfwe = 0.002, d = −0.63, CI : [−1.01,−0.26]‍; posterior 
HPC, ‍t(33) = −1.43, p = 0.161, pfwe = 0.322, d = −0.25, CI : [−0.59, 0.10]‍), and when all three feedback 
levels were modeled with one parametric regressors (Figure 2—figure supplement 3C; two-tailed 
one-sample t tests: anterior HPC, ‍t(33) = −3.59, p = 0.002, pfwe = 0.005, d = −0.56, CI : [−0.93,−0.20]‍; 
posterior HPC, ‍t(33) = −0.99, p = 0.329, pfwe = 0.659, d = −0.17, CI : [−0.51, 0.17]‍). In addition, hippo-
campal activity was higher for medium-accuracy feedback relative to low-accuracy feedback on 
voxel-wise and ROI level (Figure  2—figure supplement 4A; two-tailed one-sample t tests: ante-
rior HPC, ‍t(33) = −4.40, p = 1.110−4

‍, ‍pfwe = 2.110−4‍, ‍d = −0.76, CI : [−1.15,−0.37]‍; posterior HPC, 

‍t(33) = −3.62, p = 9.810−4
‍, ‍pfwe = 0.002, d = −0.62‍, ‍CI : [−1.00,−0.25]‍) and for high-accuracy feedback 

vs. medium-accuracy feedback on voxel-wise but not ROI level (Figure 2—figure supplement 4B; two-
tailed one-sample t tests: anterior HPC, ‍t(33) = −0.08, p = 0.933, pfwe = 1, d = −0.01, CI : [−0.36, 0.33]‍; 
posterior HPC, ‍t(33) = t = 0.99, p = 0.327, pfwe = 0.654, d = 0.17, CI : [−0.17, 0.52]‍). Further, there was no 
systematic relationship between subsequent trials on a behavioral level (Figure 1—figure supple-
ment 1A; two-tailed one-sample t test; ‍t(33) = 1.03, p = 0.312, d = 0.18, CI : [−0.17, 0.52]‍; see Materials 
and methods for details) and that the direction of the effects differed across regions (Figure 2A), 
speaking against potential feedback-dependent biases in attention.
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Figure 3. Distinct cortical and subcortical networks signal the updating of TTC-specific and TTC-independent 
task information. (A) Left panel: Visual depiction of parametric modulator design. Two regressors per run modeled 
the improvement in behavioral performance since the last trial independent of the tested TTC (Regressor 1: 
TTC-independent) or the improvement since the last trial when the same target TTC was tested (Regressor 2: 
TTC-specific). Right panel: Voxel-wise analysis results for TTC-specific and TTC-independent regressors. We 
plot thresholded t-test results at 1 mm resolution at p<0.05 whole-brain Family-wise-error (FWE) corrected 
levels overlaid on a structural template brain. Insert zooming in on hippocampus and MNI coordinates added. 
(B) Independent regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus. We plot the 
beta estimates obtained for TTC-independent in orange and TTC-specific regressors in blue. Depicted are the 
mean and SEM across participants (black dot and line) overlaid on single participant data as dots (n=34). Statistics 
reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level one-tailed one-sample t-test against 
zero.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distinct networks support TTC-specific and TTC-independent updating.

Figure supplement 2. TTC-independent hippocampal connectivity.

https://doi.org/10.7554/eLife.79027
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Feedback-dependent hippocampal functional connectivity
Having established that hippocampal activity reflected feedback in the TTC task, we reasoned that 
its activity may also show systematic co-fluctuations with other task-relevant brain regions as well. To 
test this, we estimated the functional connectivity of a 4 mm radius sphere centered on the hippo-
campal peak main effect (x=-32, y=-14, z=-14) using a seed-based psychophysiological interaction 
(PPI) analysis (see Materials and methods). We reasoned that larger timing errors and therefore low-
accuracy feedback would result in stronger updating compared to smaller timing errors and high-
accuracy feedback, a relationship that should also be reflected in the functional connectivity between 
the hippocampus and other regions. We specifically tested this using the PPI analysis by contrasting 
trials in which participants performed poorly compared to those trials in which they performed well.

We found that hippocampal activity co-fluctuated with activity in the primary motor cortex, the 
parahippocampal gyrus and medial parietal lobe as well as the cerebellum (Figure 2C). These co-fluc-
tuations were stronger when participants performed poorly in the previous trial and therefore when 
they received low-accuracy feedback. Combined with the previous analysis, this means that the abso-
lute hippocampal activity scaled positively (Figure 2A, Figure 2B) and functional connectivity scaled 
negatively (Figure 2C) with feedback valence.

Hippocampal activity explains accuracy and biases in task performance
Two critical open questions remained. First, did the observed feedback modulation actually reflect 
improvements in behavioral performance over trials? Second, was the information that was learned 
specific to the interval that was tested in a given trial, likely serving task specificity, or was independent 
of the tested interval, potentially serving regularization? To answer these questions in one analysis, we 
used a GLM modeling activity not as a function of feedback received in the previous trial (Figure 2), 
but as a function of the difference in feedback between trials (Figure 3). Specifically, we modeled with 
two separate parametric regressors the improvements in TTC task performance across subsequent 
trials (regressor 1: TTC-independent updating) as well as the improvements over subsequent trials in 
which the same TTC interval was tested (regressor 2: TTC-specific updating). We again accounted for 
nuisance variance as before, and we contrasted trials in which participants had improved versus the 
ones in which they had not improved or got worse (see Materials and methods for details). Because 
stronger sensorimotor updating should lead to larger performance improvements, we predicted to 
find stronger activity for improvements vs. no improvements in these tests (one-tailed hypothesis).

We found both TTC-specific and TTC-independent activity throughout cortical and subcortical 
regions. Distinct areas engaged in either one or in both of these processes (Figure 3A, Figure 3—
figure supplement 1). Crucially, we found that hippocampal activity signaled behavioral improve-
ments independent of the TTC intervals tested. This effect was localized to the posterior section 
of the hippocampus (Figure 3B, Figure 2—figure supplement 1A; one-tailed one-sample t tests; 
TTC-independent: anterior HPC, ‍t(33) = 0.36, p = 0.360‍, ‍pfwe = 1, d = 0.06, CI : [−0.28, 0.40]‍, poste-
rior HPC, ‍t(33) = 2.81, p = 0.004‍, ‍pfwe = 0.017, d = 0.48, CI : [0.12, 0.85]‍; TTC-specific: anterior HPC, 

‍t(33) = 0.57, p = 0.285‍, ‍pfwe = 1, d = 0.10, CI : [−0.24, 0.44]‍, posterior HPC, ‍t(33) = 1.29, p = 0.103‍, 

‍pfwe = 0.413, d = 0.22, CI : [−0.12, 0.57]‍). We then again estimated the functional connectivity profile of 
the hippocampal main effect using a PPI analysis (sphere with 4 mm radius centered on the peak voxel 
at x=-30, y=-24, z=-18), revealing co-fluctuations in multiple regions including the putamen and the 
thalamus that were specific to behavioral improvements (Figure 3—figure supplement 2).

We reasoned that updating TTC-independent information may support generalization perfor-
mance by means of regularizing the encoded intervals based on the temporal context in which they 
were encoded. In our task, an efficient way of regularizing the encoded information is to bias one’s 
TTC estimates towards the mean of the TTC distribution, which corresponds to the regression effect 
that we observed on a behavioral level (Figure 1B, Figure 1—figure supplement 1D). Given the 
hippocampal feedback modulation and updating activity we reported above, we hypothesized that 
hippocampal activity should therefore also reflect the magnitude of the regression effect in behavior. 
To test this in a final analysis, we modeled the activity in each trial parametrically either as a function 
of performance (i.e. the absolute difference between estimated and true TTC) or as a function of the 
strength of the regression effect in each trial (i.e. the absolute difference between the estimated TTC 
and the mean of the tested intervals). Voxel-wise weights for these two regressors were estimated in 
two independent GLMs (see Materials and methods for details).

https://doi.org/10.7554/eLife.79027
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Our analyses showed that trial-wise hippocampal activity increased with better TTC-
task performance (Figure  4A, Figure  4B; two-tailed one-sample t tests; anterior HPC, 

‍t(33) = −4.85, p = 2.9x10−5
‍, ‍pfwe = 5.8x10−5

‍, ‍d = −0.83, CI : [−1.24,−0.44]‍; posterior HPC, 

‍t(33) = −2.88, p = 0.007‍, ‍pfwe = 0.014, d = −0.49‍, ‍CI : [−0.86,−0.14]‍), and consistently also with 
the valence of the feedback received in the current trial (Figure  2—figure supplement 2). In 
addition, however, and as predicted, it also reflected the trial-wise magnitude of the behav-
ioral regression effect (Figure  4A, Figure  4B; two-tailed one-sample t tests; anterior HPC, 

‍t(33) = −5.55, p = 3.6x10−6, pfwe = 1.1x10−5, d = −0.95, CI : [−1.37,−0.55]‍; posterior HPC, 

‍t(33) = −1.06, p = 0.295, pfwe = 0.886, d = −0.18, CI : [−0.53, 0.16]‍). Activity in the anterior hippocampus 
was stronger in trials in which participants’ TTC estimates were more biased towards the mean of the 
sampled intervals (indicated by a negative beta estimate). Notably, similar effects were observed in 
prefrontal and posterior cingulate areas (Figure 4A).

Eye tracking: no relevant biases in viewing behavior
To ensure that our results could not be attributed to systematic error patterns in viewing behavior, 
we analyzed the co-recorded eye tracking data of our participants in detail. After data cleaning (see 
Materials and methods), we used Wilcoxon signed-rank tests for paired samples to control for differ-
ences in fixation accuracy across speed levels (Figure  1—figure supplement 2A; 4.17°/s vs.5.81°/s: 

‍V = 171, p = 0.03,‍‍pfwe = 0.179‍, ‍r = −0.04,‍ ‍CI : [−0.31, 0.23]‍; 4.17°/s vs.7.45°/s: ‍V = 152‍, ‍p = 0.012‍, 

‍pfwe = 0.071‍, ‍r = −0.06,‍ ‍CI : [−0.32, 0.22]‍; 4.17°/s vs.9.09°/s: ‍V = 161‍, ‍p = 0.019‍, ‍pfwe = 0.112‍, ‍r = −0.08,‍ 
‍CI : [−0.34, 0.2]‍; 5.81°/s vs.7.45°/s: ‍V = 224,‍ ‍p = 0.215‍, ‍pfwe = 1‍, ‍r = −0.01,‍ ‍CI : [−0.28, 0.26]‍; 5.81°/s 
vs.9.09°/s: ‍V = 217,‍ ‍p = 0.174,‍ ‍pfwe = 1‍, ‍r = −0.04,‍ ‍CI : [−0.31, 0.23]‍; 7.45°/s vs.9.09°/s: ‍V = 263,‍ 

‍pfwe = 1‍ ‍p = 0.566,‍, ‍r = −0.01,‍ ‍CI : [−0.28, 0.26]‍) and accuracy levels (Figure  1—figure supplement 
2B; Low ‍vs.‍ Medium: ‍V = 380, p = 0.163,‍ ‍pfwe = 0.489‍, ‍r = 0.02,‍ ‍CI : [−0.25, 0.29]‍; Low ‍vs.‍ High: ‍V = 366‍, 

‍p = 0.249‍, ‍pfwe = 0.747‍, ‍r = 0.03‍, ‍CI : [−0.24, 0.3]‍; Medium ‍vs.‍ High: ‍V = 278‍, ‍p = 0.748‍, ‍pfwe = 1‍, ‍r = −0.04‍, 

‍CI : [−0.31, 0.23]‍). Moreover, we examined the relationship of the fixation error with TTC-task performance 
(Figure 1—figure supplement 2C; Spearman’s ‍rho = 0.17‍, ‍p = 0.344‍) as well as with the behavioral regres-
sion effect (Figure 1—figure supplement 2C; Spearman’s ‍rho = 0.26‍, ‍p = 0.131‍). None of these control 
analyses suggested that biased patterns in viewing behavior could hinder the interpretation of our results.

Discussion
This study investigated how the human brain flexibly updates sensorimotor representations in a 
feedback-dependent manner in the service of timing behavior. We specifically focused on the hippo-
campus, due to its known role in temporal coding and learning, asking how hippocampal processing 

A) Brain activity reflects TTC-task performance
and the magnitude of the regression effect
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Figure 4. TTC-task performance vs. behavioral regression effect. (A) Voxel-wise analysis. We plot thresholded 
F-test results for the task-performance regressor and the regression-to-the-mean regressor at 1 mm resolution 
overlaid on a structural template brain. MNI coordinates added. Distinct networks reflect task performance and the 
magnitude of the regression effect. (B) Independent regions-of-interest analysis for the anterior (ant.) and posterior 
(post.) hippocampus. We plot the beta estimates obtained for each participant for each of the two regressors. 
Negative values indicate a linear increase between hippocampal activity and either task performance (left, 
Performance) or the magnitude of the regression effect (right, Regression effect). Depicted are the mean and SEM 
across participants (black dot and line) overlaid on single participant data (colored dots; n=34). Statistics reflect 
p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level two-tailed one-sample t-test against zero.
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may support behavioral flexibility, specificity, and regularization. Because anterior and posterior 
sections of the hippocampus differ in whole-brain connectivity as well as in their contributions to 
memory-guided behavior (Strange et  al., 2014), we analyzed the two sections separately. More-
over, we explored the larger brain-wide network involved in balancing these objectives. To do so, we 
monitored human brain activity with fMRI while participants estimated the time-to-contact between 
a moving target and a visual boundary. This allowed us to analyze brain activity as a function of task 
performance and as a function of the improvements in performance over time. We found that anterior 
hippocampal activity as well as functional connectivity reflected the feedback participants received 
during this task, and its activity followed the performance improvements in a temporal-context-
dependent manner. Its activity reflected trial-wise behavioral biases towards the mean of the sampled 
intervals, and activity in the posterior hippocampus signaled sensorimotor updating independent of 
the specific intervals tested. In what follows, we discuss our results in the context of prior work on 
timing behavior and on hippocampal spatiotemporal coding. Moreover, we elaborate on the domain-
general nature of hippocampal-cortical interactions and on the sensorimotor updating mechanisms 
that potentially underlie the effects observed in this study.

Spatiotemporal coding in the hippocampus
The hippocampus encompasses neurons sensitive to elapsed time (Paton and Buonomano, 2018; 
Eichenbaum, 2014; Umbach et al., 2020). These cells might play an important role in guiding timing 
behavior (Nobre and van Ede, 2018), which potentially explains why hippocampal damage or inacti-
vation impairs the ability to estimate durations in rodents (Meck et al., 1984) and humans (Richards, 
1973). Our results are in line with these reports, showing that hippocampal fMRI activity also reflects 
participants’ TTC estimation ability (Figure 4). They are also in line with other human neuroimaging 
studies suggesting that the hippocampus bridges temporal gaps between two stimuli during trace 
eyeblink conditioning (Cheng et al., 2008), and that it represents duration within event sequences 
(Barnett et al., 2014; Thavabalasingam et al., 2018; Thavabalasingam et al., 2019).

Our results speak to the above-mentioned reports by revealing that the hippocampus is an integral 
part of a widespread brain network contributing to sensorimotor updating of encoded intervals in 
humans (Figure 2, Figure 3, Figure 4, Figure 2—figure supplement 2, Figure 3—figure supple-
ment 1, Figure 3—figure supplement 2). Moreover, they demonstrate a direct link between hippo-
campal activity, the feedback participants received and the behavioral improvements expressed over 
time (Figure 3), emphasizing its role in feedback learning. Critically, the underlying process must occur 
in real-time when feedback is presented, suggesting that it plays out on short time scales. Notably, 
the human hippocampus is neither typically linked to sensorimotor timing tasks such as ours, nor is its 
activity considered to reflect temporal relationships on such short time scales. Instead, human hippo-
campal processing is often studied in the context of much longer time scales (Schiller et al., 2015; 
Eichenbaum, 2017), which showed that it may support the encoding of the progression of events into 
long-term episodic memories (Deuker et al., 2016; Montchal et al., 2019; Bellmund et al., 2022) or 
contribute to the establishment of chronological relations between events in memory (Gauthier et al., 
2019; Gauthier et  al., 2020). Intriguingly, the mechanisms at play may build on similar temporal 
coding principles as those discussed for motor timing (Yin and Troger, 2011; Eichenbaum, 2014; 
Howard, 2017; Palombo and Verfaellie, 2017; Nobre and van Ede, 2018; Paton and Buonomano, 
2018; Bellmund et al., 2020; Bellmund et al., 2022; Shikano et al., 2021; Shimbo et al., 2021), 
with differential contributions of the anterior and posterior hippocampus. Note that our observation 
of distinct activity modulations in the anterior and posterior hippocampus suggests that the functions 
and coding principles discussed here may be mediated by at least partially distinct populations of 
hippocampal cells.

Our task can be solved by estimating temporal intervals directly, but also by extrapolating the 
movement of the fixation target over time, shifting the locus of attention towards the target boundary 
(Figure 1). The brain may therefore likely monitor the temporal and spatial task regularities in parallel. 
Participants’ TTC estimates were further informed exclusively by the speed of the target, which inher-
ently builds on tracking kinematic information over time, which may explain why TTC tasks also engage 
visual motion regions in humans (de Azevedo Neto and Amaro Júnior, 2018). While future studies 
could tease apart spatial and temporal factors explicitly, our results are in line with both accounts. For 
example, the hippocampus and surrounding structures represent maps of visual space in primates, 
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which potentially mediate a coordinate system for planning behavior, integrating visual information 
with existing knowledge and to compute vectors in space (Nau et al., 2018b; Bicanski and Burgess, 
2020). These visuospatial representations are perfectly suited to guide attention and therefore the 
relevant behaviors in our task (Aly and Turk-Browne, 2017), which could be tested in the future akin 
to prior work using a similar paradigm (Nau et al., 2018a).

The role of feedback in timed motor actions
Importantly, our results neither imply that the hippocampus acts as an ‘internal clock’, nor do we think 
of it as representing action sequences or coordinating motor commands directly. Rather, its activity 
may indicate the feedback-dependent updating of encoded information more generally and indepen-
dent of the task that was used. The hippocampal formation has been proposed as a domain-general 
learning system (Kumaran, 2012; Schlichting and Preston, 2015; Chersi and Burgess, 2015; Scha-
piro et al., 2017; Wikenheiser et al., 2017; Behrens et al., 2018; Bellmund et al., 2018; Vikbladh 
et al., 2019; Geerts et al., 2020; Momennejad, 2020; Bellmund et al., 2022), which may encode 
the structure of a task abstracted away from our immediate experience. In contrast, the striatum was 
proposed to encode sensory states or actions, supporting the learning of task-specific (egocentric) 
information (Chersi and Burgess, 2015; Geerts et al., 2020). Together, the two regions may there-
fore play an important role in decision making in general also in other non-temporal domains.

Consistent with these ideas, we observed that striatal and hippocampal activity was modulated by 
behavioral feedback received in each trial (Figure 2, Figure 2—figure supplement 1). Similar feed-
back signals have been previously linked to learning (Schönberg et al., 2007; Cohen and Ranganath, 
2007; Shohamy and Wagner, 2008; Foerde and Shohamy, 2011; Wimmer et al., 2012) and the 
successful formation of hippocampal-dependent long-term memories in humans (Wittmann et al., 
2005). Moreover, hippocampal activity is known to signal learning in other tasks (Doeller et al., 2008; 
Foerde and Shohamy, 2011; Dickerson and Delgado, 2015; Wirth et al., 2009; Schapiro et al., 
2017; Kragel et al., 2021). Here, we show a direct relationship between hippocampal activity and 
ongoing timing behavior, and we show that receiving behavioral feedback modulates widespread 
brain activity (Figure 2, Figure 2—figure supplement 1), which potentially reflects the involvement 
of these areas in the coordination of reward behavior observed earlier (LeGates et al., 2018). These 
regions include those serving sensorimotor functions, but also those encoding the structure of a task 
or the necessary value functions associated with specific actions (Lee et al., 2012).

The present study further demonstrates that activity in the hippocampus co-fluctuates with activity 
in other likely task-relevant regions in a task-dependent manner. We observed such co-fluctuations 
in the striatum and cerebellum, often associated with reward processing and action coordination 
(Bostan and Strick, 2018; Cox and Witten, 2019), the motor cortex, typically involved in action plan-
ning and execution, as well as the parahippocampal gyrus and medial parietal lobe, often associated 
with visual-scene analysis (Epstein and Baker, 2019). This may indicate that behavioral feedback also 
affects the functional connectivity profile of the hippocampus with those domain-selective regions that 
are currently engaged in the ongoing task. In the present report, this included the motor cortex, the 
parahippocampal gyrus, the medial parietal lobe and the cerebellum. This may also relate to previous 
reports of the cerebellum contributing temporal signals to cortical regions during similar tasks as ours 
(O’Reilly et al., 2008). Interestingly, we observed that functional connectivity of the anterior hippo-
campus scaled negatively (Figure 2C) with feedback valence, unlike its absolute activity, which scaled 
positively with feedback valence (Figure 2A, Figure 2B), suggesting that the two measures may be 
sensitive to related but distinct processes.

What might be the neural mechanism underlying sensorimotor updating signals in our task? Prior 
work has shown that hippocampal, frontal and striatal temporal receptive fields scale relative to the 
tested intervals, and that they re-scale dynamically when those tested intervals change (MacDonald 
et  al., 2011; Gouvêa et  al., 2015; Mello et  al., 2015; Wang et  al., 2018). This may enable the 
encoding and continuous maintenance of optimal task priors, which keep our actions well-adjusted 
to our current needs. We speculate that such receptive-field re-scaling also underlies the continuous 
updating effects discussed here. Consistent with this idea and the present results, receptive-field re-s-
caling can occur on a trial-by-trial basis in the hippocampus (Shikano et al., 2021; Shimbo et al., 2021) 
but also in other regions such as the striatum and frontal cortex (Mello et al., 2015; Gouvêa et al., 
2015; Wang et al., 2018). Such network-wide receptive-field re-scaling likely builds on a re-weighting 
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of functional connections between neurons and regions, which may explain why anterior hippocampal 
connectivity correlated negatively with feedback valence in our data. Larger errors may have led to 
stronger re-scaling, which may be grounded in a corresponding change in functional connectivity.

A trade-off between specificity and regularization?
So far, we discussed how the brain may capture the temporal structure of a task and how the hippo-
campus supports this process. However, how do we encode specific task details while still forming 
representations that generalize well to new scenarios? In other words, how does the brain encode the 
probability distribution of the intervals we tested optimally without overfitting? Our behavioral and 
neuroimaging results suggest that this trade-off between specificity and regularization is governed by 
many regions, updating different types of task information in parallel (Figure 3A). For example, hippo-
campal activity reflected performance improvements independent of the tested interval, whereas 
the caudate signaled improvements specifically over those trials in which the same TTC was tested. 
In the putamen, we found evidence for both processes (Figure  3—figure supplement 1B). This 
suggests that different regions encode distinct task regularities in parallel to form optimal sensorim-
otor representations to balance specificity and regularization. This is in line with our behavioral results, 
showing that TTC-task performance became more optimal in the face of both of these two objec-
tives. Over time, behavioral responses clustered more closely between the diagonal and the average 
line in the behavioral response profile (Figure 1B, Figure 1—figure supplement 1G), and the TTC 
error decreased over time. While different participants approached these optimal performance levels 
from different directions, either starting with good performance or strong regularization, the group 
approached overall optimal performance levels over the course of the experiment.

Because hippocampal activity (Julian and Doeller, 2020) and the regression effect (Jazayeri and 
Shadlen, 2010) were previously linked to the encoding of context, we reasoned that hippocampal 
activity should also be related to the regression effect directly. This may explain why hippocampal 
activity reflected the magnitude of the regression effect as well as behavioral improvements inde-
pendently from TTC, and why it reflected feedback, which informed the updating of the internal 
prior. Notably, our results make a central prediction for future research. We anticipate that partic-
ipants with stronger updating activity in the hippocampus should be able to generalize better to 
new scenarios, for example when new intervals are tested. While we could not test this prediction 
directly in our study, we did test for a link to a related phenomenon, and that is the regression 
effect we observed on the behavioral level. We found that TTC estimates regressed towards the 
mean of the sampled intervals in all participants (Figure 1B, Figure 1—figure supplement 1D), an 
effect that is well known in the timing literature (Jazayeri and Shadlen, 2010) and other domains 
(Petzschner and Glasauer, 2011; Petzschner et  al., 2015). This regression effect likely reflects 
regularization in support of generalization (Roach et al., 2017), because time estimates are biased 
towards the mean of the tested intervals, and because the mean will likely be close to the mean of 
possible future intervals. We therefore hypothesized that this effect is grounded in the activity of 
the hippocampus, because it plays a central role in generalization in other non-temporal domains 
(Kumaran, 2012; Schlichting and Preston, 2015; Schapiro et  al., 2017; Momennejad, 2020). 
Our analyses revealed that this was indeed the case. We found that hippocampal activity followed 
the magnitude of the regression effect in each trial (Figure 4), potentially reflecting the temporal-
context-dependent regularization of encoded intervals toward the grand mean of the tested inter-
vals (Jazayeri and Shadlen, 2010).

In addition, our voxel-wise results showed that striatal subregions only tracked how accurate partic-
ipants’ responses were, not how strongly they regressed towards the mean (Figure 4A). This dovetails 
with literature on spatial-navigation (Doeller et al., 2008; Chersi and Burgess, 2015; Goodroe et al., 
2018; Gahnstrom and Spiers, 2020; Geerts et al., 2020; Wiener et al., 2016), showing that the 
striatum supports the reinforcement-dependent encoding of locations relative to landmarks, whereas 
the hippocampus may help to encode the structure of the environment in a generalizable and map-
like format. This matches the functional differences observed here in the time domain, where caudate 
activity reflects the encoding of individual details of our task such as the TTC intervals (Figure 3A, 
Figure 3—figure supplement 1A, Figure 3—figure supplement 1A, Figure 3—figure supplement 
1B), while the hippocampus generalizes across TTCs to encode the overall task structure (Figure 3A, 
Figure 3B, Figure 3—figure supplement 1A).
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Conclusion
In sum, we combined fMRI with time-to-contact 
estimations to show that the hippocampus 
supports the formation of task-specific yet flexible 
and generalizable sensorimotor representations in 
real time. Hippocampal activity reflected trial-wise 
behavioral feedback and the behavioral improve-
ments across trials, suggesting that it supports 
sensorimotor updating even on short time scales. 
The observed updating signals were independent 
from the tested intervals, and they explained 
the regression-to-the-mean biases observed on 
a behavioral level. This is in line with the notion 
that the hippocampus encodes temporal context 
in a behavior-dependent manner, and that it 
supports finding an optimal trade off between 
specificity and regularization along with other 
regions. We show that it does so even in a fast-
paced timing task typically considered to be 
hippocampal-independent. Our results show that 
the hippocampus supports rapid and feedback-
dependent updating of sensorimotor representa-
tions, suggesting that it is a central component 
of a brain-wide network balancing task specificity 
vs. regularization for flexible behavior in humans.

Materials and methods
Participants
We recruited 39 healthy volunteers with normal 
to corrected-to-normal vision for this study 
(16 females, 19–35 years old). Five participants were excluded: one participant did not comply with 
the task instructions; one was excluded due to a failure of the eye-tracker calibration; three partici-
pants were excluded due to technical issues during scanning. A total of 34 participants entered the 
analysis. The sample size was chosen to accord with previous publications using similar procedures 
(Nau et al., 2018a; Montchal et al., 2019; Schuck and Niv, 2019). The study was approved by the 
regional committee for medical and health research ethics (project number 2017/969) in Norway and 
participants gave written consent prior to scanning in accordance with the declaration of Helsinki 
(World Medical Association, 2013).

Task
Participants performed two tasks simultaneously: a smooth pursuit visual-tracking task and a time-
to-contact estimation task. The visual tracking task entailed fixation at a fixation disc that moved 
on predefined linear trajectories with one of four speeds: 4.17°/s, 5.81°/s, 7.45°/s, and 9.09°/s. 
Upon reaching the end of such a linear trajectory, the dot stopped moving until the second task 
was completed. This second task was a time-to-collision (TTC) estimation task in which participants 
indicated when the fixation target would have hit a circular boundary if it had continued moving. This 
boundary was a yellow circular line surrounding the target trajectory with 10° radius. Participants gave 
their response by pressing a button at the anticipated moment of collision. They performed this task 
while still keeping fixation, and the individual linear trajectories were all of the same length (10° visual 
angle), leading to four target TTC durations of 1.2 s, 0.88 s, 0.67 s, and 0.55 s tested in a counterbal-
anced fashion across trials. After the button press, participants received feedback for 1 s informing 
them about the accuracy of their response. When participants overestimated the TTC, half of the 
fixation disc closest to the boundary changed color (orange or red) as a function of response accu-
racy (medium or low, respectively). When participants underestimated the TTC, half of the fixation 

Table 1. Target TTCs’ response windows for 
each feedback level.

Target TTC = 0.55 s

Accuracy Response window (s)

High 0.47–0.63

Medium 0.38–0.47 | 0.63–0.71

Low <0.38 | >0.71

Target TTC = 0.67 s

Accuracy Response window (s)

High 0.57–0.77

Medium 0.47–0.57 | 0.77–0.87

Low <0.47 | >0.87

Target TTC = 0.86 s

Accuracy Response window (s)

High 0.73–0.99

Medium 0.60–0.73 | 0.99–1.12

Low <0.60 | >1.12

Target TTC = 1.2 s

Accuracy Response window (s)

High 1.02–1.38

Medium 0.84–1.02 | 1.38–1.56

Low <0.84 | >1.56

https://doi.org/10.7554/eLife.79027
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disc further away from the boundary changed color. When participants were accurate, two opposing 
quadrants of the fixation disc would turn green. This allowed us to present feedback at fixation while 
keeping the number of informative pixels matched across feedback levels. To calibrate performance 
feedback across different TTC durations, the precise response window widths of each feedback level 
scaled with the speed of the fixation target (Table 1). The following formula was used to scale the 
response window width: ‍d ± ((k ∗ d)/2)‍ where ‍d‍ is the target TTC and ‍k‍ is a constant proportional to 0.3 
and 0.6 for high and medium accuracy, respectively. This ensured that participants received approx-
imately the same feedback for tested TTCs despite the known differences in absolute performance 
between target TTCs due to inherent scalar variability (Gibbon, 1977). When no response was given, 
participants received low-accuracy feedback (two opposing quadrants of the fixation dot turned red) 
after a 4 s timeout. After the feedback, the disc remained in its last position for a variable inter-trial 
interval (ITI) sampled randomly from a uniform distribution between 0.5 s and 1.5 s. Following the end 
of the ITI, the dot continued moving in a different direction. In the course of 768 trials, each target 
TTC was sampled 192 times. We sampled eye-movement directions with 15° resolution, leading to an 
overall trajectory that was star-shaped, similar to earlier reports (Nau et al., 2018a). The full trajectory 
was never explicitly shown to the participants.

Behavioral analysis
Participants indicated the estimated TTC in each trial via button press. In line with previous work 
(Jazayeri and Shadlen, 2010), participants tended to overestimate shorter durations and under-
estimate longer durations (Figure 1B). In order to quantify this behavioral effect we extracted the 
slope value of a linear regression line fit between estimated and target TTCs separately for each 
participant. A slope of 1 would indicate that participants performed perfectly accurately for all inter-
vals. A slope of 0 would indicate that participants always gave the same response independent 
of the tested interval, fully regressing to the mean of the sampled intervals. Two separate one-
tailed one-sample t tests (against 1 or 0) were performed to corroborate that participants’ slope 
values regressed towards the mean of the sampled TTCs (Figure  1—figure supplement 1D). A 
Spearman’s rank-order correlation tested if slope values correlated with the percent of high accuracy 
trials (Figure 1—figure supplement 1E), to further demonstrate that participants relied to different 
degrees on both, the target TTCs and the mean of the sampled TTCs, in order to achieve an optimal 
performance tradeoff. As the TTC task progressed, it would be expected that participants adjusted 
their TTC estimates in order to find the best tradeoff. Thus, we tested if the slope converged over 
time towards the value of 0.5 (the slope value between veridical performance and the mean of the 
sampled TTCs) by using a linear mixed-effects model with task segment as a predictor, the absolute 
difference between the slope and the value of 0.5 as the dependent variable and participants as the 
error term (Figure 1—figure supplement 1F). We also corroborated this effect by measuring the 
dispersion of slope values between participants across task segments using a linear regression model 
with task segment as a predictor and the standard deviation of slope values across participants as the 
dependent variable (Figure 1—figure supplement 1G). As a measure of behavioral performance, 
we computed two variables for each target-TTC level: sensorimotor timing accuracy, defined as the 
absolute difference in estimated and true TTC, and sensorimotor timing precision, defined as coeffi-
cient of variation (standard deviation of estimated TTCs divided by the average estimated TTC). To 
study the interaction between these two variables for each target TTC over time, we first normalized 
accuracy by the average estimated TTC in order to make both variables comparable. We then used 
a linear mixed-effects model with precision as the dependent variable, task segment and normalized 
accuracy as predictors and target TTC as the error term. In addition, we tested whether accuracy and 
precision increased over the course of the experiment using a linear mixed effects model with task 
segment as predictor and participants as the error term. Participants received feedback after each 
trial corresponding to the absolute TTC error of that trial. On average, 46.9% (‍σ = 9.1‍) of trials were 
of high accuracy, 31.2% (‍σ = 3.9‍) were of medium accuracy and 21.1% (‍σ = 9.8‍) were of low accuracy 
(Figure 1C). Moreover, we found that this feedback distribution was indeed similar across target-TTC 
levels as planned (Figure 1—figure supplement 1B), as well as across TTC over- and underestima-
tion trials (Figure 1—figure supplement 1C). To control that there was no systematic and predict-
able relationship between subsequent trials on a behavioral level, we estimated the n-1 Pearson 
autocorrelation between feedback values received on each trial and then performed a two-tailed 
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one-sample t-test on group level against zero using the extracted correlation coefficients from each 
participant (Figure 1—figure supplement 1A).

Imaging data acquisition and preprocessing
Imaging data were acquired on a Siemens 3T MAGNETOM Skyra located at the St. Olavs Hospital 
in Trondheim, Norway. A T1-weighted structural scan was acquired with 1 mm isotropic voxel size. 
Following EPI-parameters were used: voxel size = 2 mm isotropic, TR = 1020ms, TE = 34.6ms, flip 
angle = 55°, multiband factor = 6. Participants performed a total of four scanning runs of 16–18 min 
each including a short break in the middle of each run. Functional images were corrected for head 
motion and co-registered to each individual’s structural scan using SPM12 (https://www.fil.ion.ucl.ac.​
uk/spm/). We used the FSL topup function to correct field distortions based on one image acquired 
with inverted phase-encoding direction (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup). Functional 
images were then spatially normalized to the Montreal Neurological Institute (MNI) brain template 
and smoothed with a Gaussian kernel with full-width-at-half-maximum of 4 mm for regions-of-interest 
analysis or with 8 mm for whole-brain analysis. Time series were high-pass filtered with a 128 s cut-off 
period. The results of all voxel-wise analyses were overlaid on a structural T1-template (colin27) of 
SPM12 for visualization.

Regions of interest definition and analysis
Regions-of-interest masks for different brain areas were generated for each individual participant 
based on the automatic parcellation derived from FreeSurfer’s structural reconstruction (https://surfer.​
nmr.mgh.harvard.edu/). The ROIs used in the present study include the Hippocampus as main area 
of interest (Figure 2—figure supplement 1A) as well as the Caudate Nucleus, Nucleus Accumbens, 
Thalamus, Putamen, Amygdala, and Globus Pallidum (Figure 2—figure supplement 1B). The hippo-
campal ROI was manually segmented following previous reports into its anterior and posterior 
sections based on the location of the uncal apex in the coronal plane as a bisection point (Poppenk 
et al., 2013). All individual ROIs were then spatially normalized to the MNI brain template space and 
re-sliced to the functional imaging resolution using SPM12. All ROI analyses were conducted using 
4 mm spatial smoothing.

All ROI analyses described in the following were conducted using the following procedure. We 
extracted beta estimates estimated for the respective regressors of interest for all voxels within a 
region in both hemispheres, averaged them across voxels within that region and hemispheres and 
performed one-sample t-tests on group level against zero as implemented in the software R (https://
www.R-project.org).

Brain activity as a function of feedback on the previous trial
To examine how feedback modulates activity in the subsequent trial, we used a mass-univariate 
general linear model (GLM) analysis to model the activity of each voxel and trial as a function of 
feedback received in the previous trial. The GLM included three boxcar regressors modeling the trial 
period for each feedback level, plus one boxcar regressor for ITIs, one for button presses and one for 
periods of rest (inter-session interval, ISI), which were all convolved with the canonical hemodynamic 
response function of SPM12. The start of the trial was considered as the trial onsets for modeling (i.e. 
the time when the visual-tracking target started moving). The trial end was the offset of the feedback 
phase (i.e. the moment in which the feedback disappeared from the screen). The ITI was the time 
between the offset of the feedback-phase and the subsequent trial onset. In addition, the model 
included the six realignment parameters obtained during pre-processing as well as a constant term 
modeling the mean of the time series. On the group level, we then contrasted the weights obtained 
for the low-accuracy vs. high-accuracy feedback regressors and tested for differences using t-tests 
implemented in SPM12 (Figure 2A).

Additionally, we again conducted ROI analyses for the anterior and posterior sections of the 
hippocampus (Figure 2—figure supplement 1A) following the same procedure as described earlier 
(section "Regions of interest definition and analysis"). Here, we tested beta estimates obtained in the 
first-level analysis for the feedback-in-previous-trial regressor of interest (Figure 2B).

ITIs and ISIs were modeled to reduce task-unrelated noise, but to ensure that this did not lead to 
over-specification of the above-described GLM, we repeated the full analysis without modeling the 
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two. All other regressors including the main feedback regressors of interest remained unchanged, and 
we repeated both the voxel-wise and ROI-wise statistical tests as described above (Figure 2—figure 
supplement 3B).

Moreover, instead of modeling the three feedback levels with three independent regressors, we 
repeated the analysis modeling the three feedback levels as one parametric regressor with three 
levels. In addition, one boxcar regressor was added to model all trial periods independent from feed-
back level. All other regressors remained unchanged, and the model included the regressors for ITIs 
and ISIs. We then conducted t-tests implemented in SPM12 using the beta estimates obtained for the 
parametric feedback regressor (Figure 2—figure supplement 3C). Compared to the initial analyses 
presented above, this has the advantage that medium-accuracy feedback trials are considered for the 
statistics as well.

Hippocampal functional connectivity as a function of previous-trial 
feedback
We conducted a psychophysiological interactions (PPI) analysis to examine whether hippocampal 
functional connectivity with the rest of the brain depended on the participant’s performance on the 
previous trial. To do so, we centered a sphere onto the group-level peak effects within the HPC 
using main-effect GLM described in the previous section. The sphere was 4 mm in radius and was 
centered on the following MNI coordinates: x=-32, y=-14, z=-14. The GLM included a PPI regressor, a 
nuisance regressor accounting for the main effect of past-trial performance, and a nuisance regressor 
explaining variance due to inherent physiological signal correlations between the HPC and the rest 
of the brain. The PPI regressor was an interaction term containing the element-by-element product 
of the task time course (effects due to past-trial performance) and the HPC spherical seed ROI time 
course. The PPI model was built using the same model that revealed the main effects used to define 
the HPC sphere. The estimated beta weight corresponding to the interaction term was then tested 
against zero on the group-level using a t-test implemented in SPM12 (Figure 2C). The contrast reflects 
the difference between low vs. high-accuracy feedback. This revealed brain areas whose activity was 
co-varying with the hippocampus seed ROI as a function of past-trial performance (n-1).

Brain activity as a function of current-trial performance and feedback
In two independent GLMs, we analyzed the time courses of all voxels in the brain as a function of 
behavioral performance (i.e. TTC error) in each trial, and as a function of feedback received at the end 
of each trial. The models included one mean-centered parametric regressor per run, modeling either 
the TTC error or the three feedback levels in each trial, respectively. Note that the feedback itself was 
a function of TTC error in each trial (high accuracy = 0, medium accuracy = 0.5 and low accuracy = 1). 
In addition, we added three nuisance regressors per run modeling ITIs, button presses, and periods of 
rest. These regressors were convolved with the canonical hemodynamic response function of SPM12. 
Moreover, the realignment parameters and a constant term were again added. We estimated weights 
for all regressors and conducted a t-test against zero using SPM12 for our feedback and performance 
regressors of interest on the group level (Figure 2—figure supplement 2A). Importantly, positive 
t-scores indicate a positive relationship between fMRI activity and TTC error and hence with poor 
behavioral performance. Conversely, negative t-scores indicate a negative relation between the two 
variables and hence better behavioral performance.

In addition to the voxel-wise whole-brain analyses described above, we conducted independent 
ROI analyses for the anterior and posterior sections of the hippocampus (Figure 2—figure supple-
ment 1A). Here, we tested the beta estimates obtained in our first-level analysis for the feedback 
and performance regressors of interest (Figure 2—figure supplement 2B; two-tailed one-sample t 
tests: anterior HPC, ‍t(33) = −5.92, p = 1.2x10−6, pfwe = 2.4x10−6, d = −1.02, CI : [−1.45,−0.6]‍; posterior 
HPC, ‍t(33) = −4.07, p = 2.7x10−4, pfwe = 5.4x10−4, d = −0.7, CI : [−1.09,−0.32]‍). See section ‘Regions of 
interest definition and analysis’ for more details.

Brain activity as a function of improvements in behavioral performance 
across trials
We used a GLM to analyze activity changes associated with behavioral improvements across trials. 
One regressor modeled the main effect of the trial and two parametric regressors modeled the 
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following contrasts: Parametric regressor 1: trials in which behavioral performance improved vs. 
parametric regressor 2: trials in which behavioral performance did not improve or got worse rela-
tive to the previous trial. These regressors modeled the behavioral improvements either relative to 
the previous trial, and therefore independently of TTC (likely serving regularization), or relative to 
the previous trial in which the same target TTC was presented (likely serving specificity). These two 
regressors reflect the tests for target-TTC-independent and target-TTC-specific updating, respec-
tively, and they were not orthogonalized to each other. Because we predicted to find stronger 
activity for improvements vs. no improvements in behavioral performance, we here performed 
one-tailed statistical tests, consistent with the direction of this hypothesis. Improvement in perfor-
mance was defined as receiving feedback of higher valence than in the corresponding previous 
trial. The same nuisance regressors were added as in the other GLMs and all regressors except 
the realignment parameters and the constant term were convolved with the canonical hemody-
namic response function of SPM12. On the group level, we tested the two parametric regres-
sors of interest against zero using a t-test implemented in SPM12, effectively contrasting trials in 
which behavioral performance improved against trials in which behavioral performance did not 
improve or got worse relative to the respective previous trials (Figure 3A). All runs were modeled 
separately.

Moreover, we again conducted ROI analyses for the anterior and posterior sections of the hippocampus 
(Figure 2—figure supplement 1A) following the same procedure as described earlier (see section ‘Regions of 
interest definition and analysis’). Here, we tested beta estimates obtained in the first-level analysis for the TTC-
specific and TTC-independent updating regressors using one-tailed one-sample t-tests (Figure 3B). In addi-
tion, to test which specific subcortical regions were involved in these processes, we conducted post-hoc ROI 
analyses for subcortical regions after the whole-brain results were known (Figure 3—figure supplement 1B; 
one-tailed one-sample t tests; TTC-specific: caudate: ‍t(33) = 5.95‍, ‍p = 5.6x10−7

‍, ‍pfwe = 3.4x10−6
‍, ‍d = 1.02‍, 

‍CI : [0.61, 1.45]‍, nucleus accumbens: ‍t(33) = 4.41‍, ‍p = 5.2x10−5
‍, ‍pfwe = 3.1x10−4

‍, ‍d = 0.76‍, ‍CI : [0.38, 1.15]‍, 
globus pallidus: ‍t(33) = 7.05‍, ‍2.3x10−8‍, ‍pfwe = 1.4x10−7

‍, ‍d = 1.21‍, ‍CI : [0.77, 1.67]‍, putamen: ‍t(33) = 8.07‍, 

‍p = 1.3x10−9
‍, ‍pfwe = 7.7x10−9

‍, ‍d = 1.38‍, ‍CI : [0.92, 1.88]‍, amygdala: ‍t(33) = 1.78‍, ‍p = 0.042‍, ‍pfwe = 0.255‍, 
‍d = 0.30‍, ‍CI : [−0.04, 0.66]‍, thalamus: ‍t(33) = 2.61‍, ‍p = 0.007‍, ‍pfwe = 0.007‍, ‍d = 0.45‍, ‍CI : [0.09, 0.81]‍; TTC-
independent: caudate: ‍t(33) = −0.67‍, ‍p = 0.746‍, ‍pfwe = 1, d = −0.11‍, ‍CI : [−0.46, 0.23]‍, nucleus accumbens: 

‍t(33) = 1.82‍, ‍p = 0.039‍, ‍pfwe = 0.235‍, ‍d = 0.31‍, ‍CI : [−0.04, 0.66]‍, globus pallidus: ‍t(33) = 7.06‍, ‍p = 2.2x10−8
‍, 

‍pfwe = 1.3x10−7
‍, ‍d = 1.21‍, ‍CI : [0.77, 1.68]‍, putamen: ‍t(33) = 6.21‍, ‍p = 2.6x10−7

‍, ‍pfwe = 1.6x10−6
‍, ‍d = 1.06‍, 

‍CI : [0.65, 1.50]‍, amygdala: ‍t(33) = 4.25‍, ‍p = 8.3x10−5
‍, ‍pfwe = 4.9x10−4

‍, ‍d = 0.73‍, ‍CI : [0.35, 1.12]‍, thalamus: 

‍t(33) = 4.05‍, ‍p = 1.5x10−4
‍, ‍pfwe = 8.9x10−4

‍, ‍d = 0.69‍, ‍CI : [0.32, 1.08]‍). The subcortical ROIs (Figure 2—
figure supplement 1B) were based on the FreeSurfer parcellation as described in the section ‘Regions of 
interest definition and analysis’.

Hippocampal functional connectivity as a function of TTC-independent 
updating
To examine which brain regions whose activity co-fluctuated with the one of the hippocampus during 
TTC-independent updating, we again conducted a PPI analysis similar to the one described earlier. 
A spherical seed ROI with a radius of 4 mm was centered around the hippocampal group-level peak 
effect (x=-30, y=-24, z=-18) observed for the TTC-independent updating regressor described above. 
The GLM included a PPI regressor and two nuisance regressors accounting for task-related effects 
from our contrast of interest (Behavioral improvements vs. no behavioral improvements) as well as 
physiological correlations that could arise due to anatomical connections to the hippocampal seed 
region or shared subcortical input. On the group-level, we then tested the weights estimated for our 
PPI regressor of interest against zero using a t-test implemented in SPM12. This revealed areas whose 
activity co-fluctuated with the one of the hippocampus as a function TTC-independent updating 
(Figure 3—figure supplement 2A).

Moreover, we conducted independent ROI analyses for subcortical regions as described in the section 
‘Regions of interest definition and analysis’. Here, we tested the beta estimates obtained for the hippo-
campal seed-based PPI regressor of interest (Figure 3—figure supplement 2B; one-tailed one-sample 
t tests: caudate: ‍t(33) = 1.06, p = 0.149‍, ‍pfwe = 0.894, d = 0.18, CI : [−0.16, 0.53]‍, putamen: ‍t(33) = 2.79‍, 

‍p = 0.004‍, ‍pfwe = 0.026‍, ‍d = 0.48‍, ‍CI : [0.12, 0.84]‍ globus pallidus: ‍t(33) = 2.52‍, ‍p = 0.008‍, ‍pfwe = 0.050‍, 
‍d = 0.43‍, ‍CI : [0.08, 0.79]‍, amygdala: ‍t(33) = 2.60, p = 0.007,‍ ‍pfwe = 0.041, d = 0.45, CI : [0.09, 0.81]‍, nucleus 
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accumbens: ‍t(33) = −1.14, p = 0.869‍, ‍pfwe = 1, d = −0.20, CI : [−0.54, 0.15]‍, thalamus: ‍t(33) = 2.71, p = 0.005‍, 

‍pfwe = 0.032, d = 0.46, CI : [0.11, 0.83]‍).

Brain activity as a function of behavioral performance and as a function 
of the behavioral regression effect
To examine the neural underpinnings governing specificity and regularization in timing behavior in 
detail, we analyzed the trial-wise activity of each voxel as a function of performance in the TTC task 
(i.e. the absolute difference between estimated and true TTC in each trial) and as a function of the 
regression effect in behavior (i.e. the absolute difference between the estimated TTC and the mean 
of the sampled intervals, which was 0.82 s). To avoid effects of potential co-linearity between these 
regressors, we estimated model weights using two independent GLMs, which modeled the time 
course of each trial with either one of the two regressors. In addition, we again accounted for nuisance 
variance as described before, and all regressors except the realignment parameters and the constant 
term were convolved with the canonical HRF of SPM12. After fitting the model, we used the weights 
estimated for the two regressors to perform voxel-wise F-tests using SPM12, revealing activity that 
was correlated with these two regressors independent of the sign of the correlation (Figure 4A). In 
addition, we again performed ROI analyses using two-tailed one-sample t-tests for the anterior and 
posterior hippocampus (Figure 2—figure supplement 1A, Figure 4B).

Eye tracking: Fixation quality does not affect the interpretation of our 
results
We used an MR-compatible infrared eye tracker with long-range optics (Eyelink 1000) to monitor gaze 
position at a rate of 500 hz during the experiment. After blink removal, the eye tracking data was 
linearly detrended, median centered, downsampled to the screen refresh rate of 120 hz and smoothed 
with a running-average kernel of 100ms. Wilcoxon signed-rank tests for paired samples were used in 
order to test for potential biases in fixation error across speeds (Figure 1—figure supplement 2A) 
or across feedback levels (Figure 1—figure supplement 2B). Moreover, we tested if differences in 
fixation error could either explain individual differences in the regression effect, or individual differ-
ences in absolute TTC error in behavior using Spearman’s rank-order correlations (Figure 1—figure 
supplement 2C).

Acknowledgements
We thank Raymundo Machado de Azevedo Neto for helpful comments on an earlier version of this 
manuscript. CFD’s research is supported by the Max Planck Society, the Kavli Foundation, the Jebsen 
foundation, the Centre of Excellence scheme of the Research Council of Norway – Centre for Neural 
Computation (223262 /F50), The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Micro-
circuits and the National Infrastructure scheme of the Research Council of Norway – NORBRAIN 
(197467 /F50). MN’s research is supported by a Feodor-Lynen Research Fellowship of the Alexander 
von Humboldt Foundation. RK’s research is supported by a CIDEGENT grant (CIDEGENT/2021/027) 
from the Valencian Community’s program for the support of talented researchers and the Ministerio 
de Ciencia, Innovación y Universidades, which is part of the Agencia Estatal de Investigación (AEI), 
through the project PID2021-12233NA-100.

Additional information

Competing interests
Virginie van Wassenhove: Reviewing editor, eLife. The other authors declare that no competing inter-
ests exist.

https://doi.org/10.7554/eLife.79027


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Polti, Nau et al. eLife 2022;11:e79027. DOI: https://​doi.​org/​10.​7554/​eLife.​79027 � 18 of 22

Funding

Funder Grant reference number Author

European Research 
Council

ERC-CoG GEOCOG 
724836

Christian F Doeller

Max Planck Society Christian F Doeller

Kavli Foundation Christian F Doeller

Kristian Gerhard Jebsen 
Foundation

Christian F Doeller

Norges Forskningsråd 223262/F50 Christian F Doeller

Egil and Pauline Braathen 
and Fred Kavli Centre for 
Cortical Microcircuits

Christian F Doeller

Norges Forskningsråd NORBRAIN 197467/F50 Christian F Doeller

Alexander von Humboldt 
Foundation

Feodor-Lynen Research 
Fellowship

Matthias Nau

Generalitat Valenciana CIDEGENT/2021/027 Raphael Kaplan

Ministerio de Ciencia, 
Innovación y Universidades

PID2021-122338NA-I00 Raphael Kaplan

Commissariat à l'Énergie 
Atomique et aux Énergies 
Alternatives

Virginie van Wassenhove

Institut National de la 
Santé et de la Recherche 
Médicale

Virginie van Wassenhove

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Ignacio Polti, Conceptualization, Data curation, Software, Formal analysis, Investigation, Visualization, 
Methodology, Writing – original draft, Project administration, Writing – review and editing; Matthias 
Nau, Conceptualization, Data curation, Supervision, Visualization, Methodology, Writing – original 
draft, Project administration, Writing – review and editing; Raphael Kaplan, Supervision, Project 
administration, Writing – review and editing; Virginie van Wassenhove, Supervision, Writing – review 
and editing; Christian F Doeller, Conceptualization, Supervision, Funding acquisition, Project adminis-
tration, Writing – review and editing

Author ORCIDs
Ignacio Polti ‍ ‍ http://orcid.org/0000-0002-6631-4315
Matthias Nau ‍ ‍ http://orcid.org/0000-0003-0956-7815
Raphael Kaplan ‍ ‍ http://orcid.org/0000-0002-5023-1566
Virginie van Wassenhove ‍ ‍ http://orcid.org/0000-0002-2569-5502
Christian F Doeller ‍ ‍ http://orcid.org/0000-0003-4120-4600

Ethics
The study was approved by the regional committee for medical and health research ethics (project 
number 2017/969) in Norway and participants gave written consent prior to scanning in accordance 
with the declaration of Helsinki (World Medical Association, 2013).

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.79027.sa1
Author response https://doi.org/10.7554/eLife.79027.sa2

https://doi.org/10.7554/eLife.79027
http://orcid.org/0000-0002-6631-4315
http://orcid.org/0000-0003-0956-7815
http://orcid.org/0000-0002-5023-1566
http://orcid.org/0000-0002-2569-5502
http://orcid.org/0000-0003-4120-4600
https://doi.org/10.7554/eLife.79027.sa1
https://doi.org/10.7554/eLife.79027.sa2


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Polti, Nau et al. eLife 2022;11:e79027. DOI: https://​doi.​org/​10.​7554/​eLife.​79027 � 19 of 22

Additional files
Supplementary files
•  MDAR checklist 

Data availability
Source data and analysis code are available at the following Open Science Framework repository: 
https://osf.io/cs8d6/. Pre-processed eye-tracker data can be found here: https://osf.io/mrhk9/. Raw 
fMRI data is available at the following G-Node Infrastructure repository: https://gin.g-node.org/ipolti/​
TTC_HPCF.git.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Polti I, Nau M, Kaplan 
R, Wassenhove van, 
Doeller CF

2022 Time-To-Contact https://​gin.​g-​node.​
org/​ipolti/​TTC_​HPCF.​
git

G-Node Infrastructure, 
10.12751/g-node.pwn4qz

Frey M, Nau M, 
Doeller CF

2021 DeepMReye https://​osf.​io/​mrhk9/ Open Science Framework, 
10.17605/OSF.IO/MRHK9

Polti I, Nau M 2022 Rapid encoding of task 
regularities in the human 
hippocampus guides 
sensorimotor timing

https://​osf.​io/​cs8d6/ Open Science Framework, 
cs8d6

References
Acerbi L, Wolpert DM, Vijayakumar S. 2012. Internal representations of temporal statistics and feedback 

calibrate motor-sensory interval timing. PLOS Computational Biology 8:e1002771. DOI: https://doi.org/10.​
1371/journal.pcbi.1002771, PMID: 23209386

Aly M, Turk-Browne NB. 2017. How hippocampal memory shapes, and is shaped by, attention. Hannula DE, Duff 
MC (Eds). The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to 
Memory and Flexible Cognition. Cham: Springer International Publishing. p. 369–403. DOI: https://doi.org/10.​
1007/978-3-319-50406-3_12

Barnett AJ, O’Neil EB, Watson HC, Lee ACH. 2014. The human hippocampus is sensitive to the durations of 
events and intervals within a sequence. Neuropsychologia 64:1–12. DOI: https://doi.org/10.1016/j.​
neuropsychologia.2014.09.011, PMID: 25223466

Behrens TEJ, Muller TH, Whittington JCR, Mark S, Baram AB, Stachenfeld KL, Kurth-Nelson Z. 2018. What is a 
cognitive map? Organizing knowledge for flexible behavior. Neuron 100:490–509. DOI: https://doi.org/10.​
1016/j.neuron.2018.10.002, PMID: 30359611

Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF. 2018. Navigating cognition: spatial codes for human thinking. 
Science 362:eaat6766. DOI: https://doi.org/10.1126/science.aat6766, PMID: 30409861

Bellmund JLS, Polti I, Doeller CF. 2020. Sequence memory in the hippocampal-entorhinal region. Journal of 
Cognitive Neuroscience 32:2056–2070. DOI: https://doi.org/10.1162/jocn_a_01592, PMID: 32530378

Bellmund JLS, Deuker L, Montijn ND, Doeller CF. 2022. Mnemonic construction and representation of temporal 
structure in the hippocampal formation. Nature Communications 13:3395. DOI: https://doi.org/10.1038/​
s41467-022-30984-3, PMID: 35739096

Bicanski A, Burgess N. 2020. Neuronal vector coding in spatial cognition. Nature Reviews. Neuroscience 
21:453–470. DOI: https://doi.org/10.1038/s41583-020-0336-9, PMID: 32764728

Bostan AC, Strick PL. 2018. The basal ganglia and the cerebellum: nodes in an integrated network. Nature 
Reviews. Neuroscience 19:338–350. DOI: https://doi.org/10.1038/s41583-018-0002-7, PMID: 29643480

Burgess N, Maguire EA, O’Keefe J. 2002. The human hippocampus and spatial and episodic memory. Neuron 
35:625–641. DOI: https://doi.org/10.1016/s0896-6273(02)00830-9, PMID: 12194864

Chang CJ, Jazayeri M. 2018. Integration of speed and time for estimating time to contact. PNAS 115:E2879–
E2887. DOI: https://doi.org/10.1073/pnas.1713316115

Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. 2008. Neural substrates underlying human delay and 
trace eyeblink conditioning. PNAS 105:8108–8113. DOI: https://doi.org/10.1073/pnas.0800374105, PMID: 
18523017

Chersi F, Burgess N. 2015. The cognitive architecture of spatial navigation: hippocampal and striatal 
contributions. Neuron 88:64–77. DOI: https://doi.org/10.1016/j.neuron.2015.09.021

Cicchini GM, Arrighi R, Cecchetti L, Giusti M, Burr DC. 2012. Optimal encoding of interval timing in expert 
percussionists. The Journal of Neuroscience 32:1056–1060. DOI: https://doi.org/10.1523/JNEUROSCI.3411-11.​
2012, PMID: 22262903

https://doi.org/10.7554/eLife.79027
https://osf.io/cs8d6/
https://osf.io/mrhk9/
https://gin.g-node.org/ipolti/TTC_HPCF.git
https://gin.g-node.org/ipolti/TTC_HPCF.git
https://gin.g-node.org/ipolti/TTC_HPCF.git
https://gin.g-node.org/ipolti/TTC_HPCF.git
https://gin.g-node.org/ipolti/TTC_HPCF.git
https://osf.io/mrhk9/
https://osf.io/cs8d6/
https://doi.org/10.1371/journal.pcbi.1002771
https://doi.org/10.1371/journal.pcbi.1002771
http://www.ncbi.nlm.nih.gov/pubmed/23209386
https://doi.org/10.1007/978-3-319-50406-3_12
https://doi.org/10.1007/978-3-319-50406-3_12
https://doi.org/10.1016/j.neuropsychologia.2014.09.011
https://doi.org/10.1016/j.neuropsychologia.2014.09.011
http://www.ncbi.nlm.nih.gov/pubmed/25223466
https://doi.org/10.1016/j.neuron.2018.10.002
https://doi.org/10.1016/j.neuron.2018.10.002
http://www.ncbi.nlm.nih.gov/pubmed/30359611
https://doi.org/10.1126/science.aat6766
http://www.ncbi.nlm.nih.gov/pubmed/30409861
https://doi.org/10.1162/jocn_a_01592
http://www.ncbi.nlm.nih.gov/pubmed/32530378
https://doi.org/10.1038/s41467-022-30984-3
https://doi.org/10.1038/s41467-022-30984-3
http://www.ncbi.nlm.nih.gov/pubmed/35739096
https://doi.org/10.1038/s41583-020-0336-9
http://www.ncbi.nlm.nih.gov/pubmed/32764728
https://doi.org/10.1038/s41583-018-0002-7
http://www.ncbi.nlm.nih.gov/pubmed/29643480
https://doi.org/10.1016/s0896-6273(02)00830-9
http://www.ncbi.nlm.nih.gov/pubmed/12194864
https://doi.org/10.1073/pnas.1713316115
https://doi.org/10.1073/pnas.0800374105
http://www.ncbi.nlm.nih.gov/pubmed/18523017
https://doi.org/10.1016/j.neuron.2015.09.021
https://doi.org/10.1523/JNEUROSCI.3411-11.2012
https://doi.org/10.1523/JNEUROSCI.3411-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22262903


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Polti, Nau et al. eLife 2022;11:e79027. DOI: https://​doi.​org/​10.​7554/​eLife.​79027 � 20 of 22

Cohen MX, Ranganath C. 2007. Reinforcement learning signals predict future decisions. The Journal of 
Neuroscience 27:371–378. DOI: https://doi.org/10.1523/JNEUROSCI.4421-06.2007, PMID: 17215398

Cox J, Witten IB. 2019. Striatal circuits for reward learning and decision-making. Nature Reviews. Neuroscience 
20:482–494. DOI: https://doi.org/10.1038/s41583-019-0189-2, PMID: 31171839

Daw ND, Dayan P. 2014. The algorithmic anatomy of model-based evaluation. Philosophical Transactions of the 
Royal Society of London. Series B, Biological Sciences 369:1655. DOI: https://doi.org/10.1098/rstb.2013.0478, 
PMID: 25267820

de Azevedo Neto RM, Amaro Júnior E. 2018. Bilateral dorsal fronto-parietal areas are associated with 
integration of visual motion information and timed motor action. Behavioural Brain Research 337:91–98. DOI: 
https://doi.org/10.1016/j.bbr.2017.09.046, PMID: 28964911

Deuker L, Bellmund JL, Navarro Schröder T, Doeller CF. 2016. An event map of memory space in the 
hippocampus. eLife 5:e16534. DOI: https://doi.org/10.7554/eLife.16534, PMID: 27710766

Dickerson KC, Delgado MR. 2015. Contributions of the hippocampus to feedback learning. Cognitive, Affective 
& Behavioral Neuroscience 15:861–877. DOI: https://doi.org/10.3758/s13415-015-0364-5, PMID: 26055632

Doeller CF, Opitz B, Krick CM, Mecklinger A, Reith W. 2005. Prefrontal-hippocampal dynamics involved in 
learning regularities across episodes. Cerebral Cortex 15:1123–1133. DOI: https://doi.org/10.1093/cercor/​
bhh211, PMID: 15563722

Doeller CF, King JA, Burgess N. 2008. Parallel striatal and hippocampal systems for landmarks and boundaries in 
spatial memory. PNAS 105:5915–5920. DOI: https://doi.org/10.1073/pnas.0801489105, PMID: 18408152

Eichenbaum H. 2014. Time cells in the hippocampus: a new dimension for mapping memories. Nature Reviews. 
Neuroscience 15:732–744. DOI: https://doi.org/10.1038/nrn3827, PMID: 25269553

Eichenbaum H. 2017. On the integration of space, time, and memory. Neuron 95:1007–1018. DOI: https://doi.​
org/10.1016/j.neuron.2017.06.036, PMID: 28858612

Epstein RA, Baker CI. 2019. Scene perception in the human brain. Annual Review of Vision Science 5:373–397. 
DOI: https://doi.org/10.1146/annurev-vision-091718-014809, PMID: 31226012

Foerde K, Shohamy D. 2011. Feedback timing modulates brain systems for learning in humans. The Journal of 
Neuroscience 31:13157–13167. DOI: https://doi.org/10.1523/JNEUROSCI.2701-11.2011, PMID: 21917799

Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G. 2016. Active inference: a process theory. Neural 
Computation 29:1–49. DOI: https://doi.org/10.1162/NECO_a_00912, PMID: 27870614

Gahnstrom CJ, Spiers HJ. 2020. Striatal and hippocampal contributions to flexible navigation in rats and 
humans. Brain and Neuroscience Advances 4:2398212820979772. DOI: https://doi.org/10.1177/​
2398212820979772, PMID: 33426302

Gauthier B, Pestke K, van Wassenhove V. 2019. Building the arrow of time… over time: a sequence of brain 
activity mapping imagined events in time and space. Cerebral Cortex 29:4398–4414. DOI: https://doi.org/10.​
1093/cercor/bhy320, PMID: 30566689

Gauthier B, Prabhu P, Kotegar KA, van Wassenhove V. 2020. Hippocampal contribution to ordinal psychological 
time in the human brain. Journal of Cognitive Neuroscience 32:2071–2086. DOI: https://doi.org/10.1162/jocn_​
a_01586, PMID: 32459130

Geerts JP, Chersi F, Stachenfeld KL, Burgess N. 2020. A general model of hippocampal and dorsal striatal 
learning and decision making. PNAS 117:31427–31437. DOI: https://doi.org/10.1073/pnas.2007981117, PMID: 
33229541

Gershman SJ, Moustafa AA, Ludvig EA. 2014. Time representation in reinforcement learning models of the basal 
ganglia. Frontiers in Computational Neuroscience 7:194. DOI: https://doi.org/10.3389/fncom.2013.00194, 
PMID: 24409138

Gibbon J. 1977. Scalar expectancy theory and Weber’s law in animal timing. Psychological Review 84:279–325. 
DOI: https://doi.org/10.1037/0033-295X.84.3.279

Goodroe SC, Starnes J, Brown TI. 2018. The complex nature of hippocampal-striatal interactions in spatial 
navigation. Frontiers in Human Neuroscience 12:250. DOI: https://doi.org/10.3389/fnhum.2018.00250, PMID: 
29977198

Gouvêa TS, Monteiro T, Motiwala A, Soares S, Machens C, Paton JJ. 2015. Striatal dynamics explain duration 
judgments. eLife 4:e11386. DOI: https://doi.org/10.7554/eLife.11386, PMID: 26641377

Howard MW. 2017. Temporal and spatial context in the mind and brain. Current Opinion in Behavioral Sciences 
17:14–19. DOI: https://doi.org/10.1016/j.cobeha.2017.05.022, PMID: 28845441

Huang Y, Rao RPN. 2011. Predictive coding. Wiley Interdisciplinary Reviews. Cognitive Science 2:580–593. DOI: 
https://doi.org/10.1002/wcs.142, PMID: 26302308

Jazayeri M, Shadlen MN. 2010. Temporal context calibrates interval timing. Nature Neuroscience 13:1020–1026. 
DOI: https://doi.org/10.1038/nn.2590, PMID: 20581842

Julian J, Doeller CF. 2020. Context in spatial and episodic memory. Poeppel D, Mangun GR, Gazzaniga MS (Eds). 
The Cognitive Neurosciences. The MIT Press. p. 219–234.

Kaplan R, Schuck NW, Doeller CF. 2017. The role of mental maps in decision-making. Trends in Neurosciences 
40:256–259. DOI: https://doi.org/10.1016/j.tins.2017.03.002, PMID: 28365032

Kragel JE, Schuele S, VanHaerents S, Rosenow JM, Voss JL. 2021. Rapid coordination of effective learning by the 
human hippocampus. Science Advances 7:25. DOI: https://doi.org/10.1126/sciadv.abf7144, PMID: 34144985

Kumaran D. 2012. What representations and computations underpin the contribution of the hippocampus to 
generalization and inference? Frontiers in Human Neuroscience 6:157. DOI: https://doi.org/10.3389/fnhum.​
2012.00157, PMID: 22675298

https://doi.org/10.7554/eLife.79027
https://doi.org/10.1523/JNEUROSCI.4421-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17215398
https://doi.org/10.1038/s41583-019-0189-2
http://www.ncbi.nlm.nih.gov/pubmed/31171839
https://doi.org/10.1098/rstb.2013.0478
http://www.ncbi.nlm.nih.gov/pubmed/25267820
https://doi.org/10.1016/j.bbr.2017.09.046
http://www.ncbi.nlm.nih.gov/pubmed/28964911
https://doi.org/10.7554/eLife.16534
http://www.ncbi.nlm.nih.gov/pubmed/27710766
https://doi.org/10.3758/s13415-015-0364-5
http://www.ncbi.nlm.nih.gov/pubmed/26055632
https://doi.org/10.1093/cercor/bhh211
https://doi.org/10.1093/cercor/bhh211
http://www.ncbi.nlm.nih.gov/pubmed/15563722
https://doi.org/10.1073/pnas.0801489105
http://www.ncbi.nlm.nih.gov/pubmed/18408152
https://doi.org/10.1038/nrn3827
http://www.ncbi.nlm.nih.gov/pubmed/25269553
https://doi.org/10.1016/j.neuron.2017.06.036
https://doi.org/10.1016/j.neuron.2017.06.036
http://www.ncbi.nlm.nih.gov/pubmed/28858612
https://doi.org/10.1146/annurev-vision-091718-014809
http://www.ncbi.nlm.nih.gov/pubmed/31226012
https://doi.org/10.1523/JNEUROSCI.2701-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21917799
https://doi.org/10.1162/NECO_a_00912
http://www.ncbi.nlm.nih.gov/pubmed/27870614
https://doi.org/10.1177/2398212820979772
https://doi.org/10.1177/2398212820979772
http://www.ncbi.nlm.nih.gov/pubmed/33426302
https://doi.org/10.1093/cercor/bhy320
https://doi.org/10.1093/cercor/bhy320
http://www.ncbi.nlm.nih.gov/pubmed/30566689
https://doi.org/10.1162/jocn_a_01586
https://doi.org/10.1162/jocn_a_01586
http://www.ncbi.nlm.nih.gov/pubmed/32459130
https://doi.org/10.1073/pnas.2007981117
http://www.ncbi.nlm.nih.gov/pubmed/33229541
https://doi.org/10.3389/fncom.2013.00194
http://www.ncbi.nlm.nih.gov/pubmed/24409138
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.3389/fnhum.2018.00250
http://www.ncbi.nlm.nih.gov/pubmed/29977198
https://doi.org/10.7554/eLife.11386
http://www.ncbi.nlm.nih.gov/pubmed/26641377
https://doi.org/10.1016/j.cobeha.2017.05.022
http://www.ncbi.nlm.nih.gov/pubmed/28845441
https://doi.org/10.1002/wcs.142
http://www.ncbi.nlm.nih.gov/pubmed/26302308
https://doi.org/10.1038/nn.2590
http://www.ncbi.nlm.nih.gov/pubmed/20581842
https://doi.org/10.1016/j.tins.2017.03.002
http://www.ncbi.nlm.nih.gov/pubmed/28365032
https://doi.org/10.1126/sciadv.abf7144
http://www.ncbi.nlm.nih.gov/pubmed/34144985
https://doi.org/10.3389/fnhum.2012.00157
https://doi.org/10.3389/fnhum.2012.00157
http://www.ncbi.nlm.nih.gov/pubmed/22675298


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Polti, Nau et al. eLife 2022;11:e79027. DOI: https://​doi.​org/​10.​7554/​eLife.​79027 � 21 of 22

Lee D, Seo H, Jung MW. 2012. Neural basis of reinforcement learning and decision making. Annual Review of 
Neuroscience 35:287–308. DOI: https://doi.org/10.1146/annurev-neuro-062111-150512, PMID: 22462543

LeGates TA, Kvarta MD, Tooley JR, Francis TC, Lobo MK, Creed MC, Thompson SM. 2018. Reward behaviour is 
regulated by the strength of hippocampus-nucleus accumbens synapses. Nature 564:258–262. DOI: https://​
doi.org/10.1038/s41586-018-0740-8, PMID: 30478293

MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. 2011. Hippocampal “ time cells ” bridge the gap in 
memory for discontiguous events. Neuron 71:737–749. DOI: https://doi.org/10.1016/j.neuron.2011.07.012, 
PMID: 21867888

Meck WH, Church RM, Olton DS. 1984. Hippocampus, time, and memory. Behavioral Neuroscience 98:3–22. 
DOI: https://doi.org/10.1037//0735-7044.98.1.3, PMID: 6696797

Mello GBM, Soares S, Paton JJ. 2015. A scalable population code for time in the striatum. Current Biology 
25:1113–1122. DOI: https://doi.org/10.1016/j.cub.2015.02.036, PMID: 25913405

Momennejad I. 2020. Learning structures: predictive representations, replay, and generalization. Current 
Opinion in Behavioral Sciences 32:155–166. DOI: https://doi.org/10.1016/j.cobeha.2020.02.017, PMID: 
35419465

Montchal ME, Reagh ZM, Yassa MA. 2019. Precise temporal memories are supported by the lateral entorhinal 
cortex in humans. Nature Neuroscience 22:284–288. DOI: https://doi.org/10.1038/s41593-018-0303-1, PMID: 
30643291

Nau M, Navarro Schröder T, Bellmund JLS, Doeller CF. 2018a. Hexadirectional coding of visual space in human 
entorhinal cortex. Nature Neuroscience 21:188–190. DOI: https://doi.org/10.1038/s41593-017-0050-8, PMID: 
29311746

Nau M, Julian JB, Doeller CF. 2018b. How the brain’s navigation system shapes our visual experience. Trends in 
Cognitive Sciences 22:810–825. DOI: https://doi.org/10.1016/j.tics.2018.06.008, PMID: 30031670

Nobre AC, van Ede F. 2018. Anticipated moments: temporal structure in attention. Nature Reviews. 
Neuroscience 19:34–48. DOI: https://doi.org/10.1038/nrn.2017.141, PMID: 29213134

O’Reilly JX, Mesulam MM, Nobre AC. 2008. The cerebellum predicts the timing of perceptual events. The 
Journal of Neuroscience 28:2252–2260. DOI: https://doi.org/10.1523/JNEUROSCI.2742-07.2008, PMID: 
18305258

Palombo DJ, Verfaellie M. 2017. Hippocampal contributions to memory for time: evidence from 
neuropsychological studies. Current Opinion in Behavioral Sciences 17:107–113. DOI: https://doi.org/10.1016/​
j.cobeha.2017.07.015

Paton JJ, Buonomano DV. 2018. The neural basis of timing: distributed mechanisms for diverse functions. 
Neuron 98:687–705. DOI: https://doi.org/10.1016/j.neuron.2018.03.045, PMID: 29772201

Peer M, Brunec IK, Newcombe NS, Epstein RA. 2021. Structuring knowledge with cognitive maps and cognitive 
graphs. Trends in Cognitive Sciences 25:37–54. DOI: https://doi.org/10.1016/j.tics.2020.10.004, PMID: 
33248898

Petter EA, Gershman SJ, Meck WH. 2018. Integrating models of interval timing and reinforcement learning. 
Trends in Cognitive Sciences 22:911–922. DOI: https://doi.org/10.1016/j.tics.2018.08.004, PMID: 30266150

Petzschner FH, Glasauer S. 2011. Iterative Bayesian estimation as an explanation for range and regression 
effects: a study on human path integration. The Journal of Neuroscience 31:17220–17229. DOI: https://doi.​
org/10.1523/JNEUROSCI.2028-11.2011, PMID: 22114288

Petzschner FH, Glasauer S, Stephan KE. 2015. A Bayesian perspective on magnitude estimation. Trends in 
Cognitive Sciences 19:285–293. DOI: https://doi.org/10.1016/j.tics.2015.03.002, PMID: 25843543

Poppenk J, Evensmoen HR, Moscovitch M, Nadel L. 2013. Long-axis specialization of the human hippocampus. 
Trends in Cognitive Sciences 17:230–240. DOI: https://doi.org/10.1016/j.tics.2013.03.005, PMID: 23597720

Rakitin BC, Gibbon J, Penney TB, Malapani C, Hinton SC, Meck WH. 1998. Scalar expectancy theory and 
peak-interval timing in humans. Journal of Experimental Psychology. Animal Behavior Processes 24:15–33. DOI: 
https://doi.org/10.1037//0097-7403.24.1.15, PMID: 9438963

Richards W. 1973. Time reproductions by H.M. Acta Psychologica 37:279–282. DOI: https://doi.org/10.1016/​
0001-6918(73)90020-6, PMID: 4743299

Roach NW, McGraw PV, Whitaker DJ, Heron J. 2017. Generalization of prior information for rapid bayesian time 
estimation. PNAS 114:412–417. DOI: https://doi.org/10.1073/pnas.1610706114, PMID: 28007982

Schapiro AC, Turk-Browne NB, Botvinick MM, Norman KA. 2017. Complementary learning systems within the 
hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 372:1711. DOI: https://​
doi.org/10.1098/rstb.2016.0049, PMID: 27872368

Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ, Leutgeb S, Ranganath C. 2015. Memory and space: 
towards an understanding of the cognitive map. The Journal of Neuroscience 35:13904–13911. DOI: https://​
doi.org/10.1523/JNEUROSCI.2618-15.2015, PMID: 26468191

Schlichting ML, Preston AR. 2015. Memory integration: neural mechanisms and implications for behavior. 
Current Opinion in Behavioral Sciences 1:1–8. DOI: https://doi.org/10.1016/j.cobeha.2014.07.005, PMID: 
25750931

Schönberg T, Daw ND, Joel D, O’Doherty JP. 2007. Reinforcement learning signals in the human striatum 
distinguish learners from nonlearners during reward-based decision making. The Journal of Neuroscience 
27:12860–12867. DOI: https://doi.org/10.1523/JNEUROSCI.2496-07.2007, PMID: 18032658

Schuck NW, Niv Y. 2019. Sequential replay of nonspatial task states in the human hippocampus. Science 
364:eaaw5181. DOI: https://doi.org/10.1126/science.aaw5181, PMID: 31249030

https://doi.org/10.7554/eLife.79027
https://doi.org/10.1146/annurev-neuro-062111-150512
http://www.ncbi.nlm.nih.gov/pubmed/22462543
https://doi.org/10.1038/s41586-018-0740-8
https://doi.org/10.1038/s41586-018-0740-8
http://www.ncbi.nlm.nih.gov/pubmed/30478293
https://doi.org/10.1016/j.neuron.2011.07.012
http://www.ncbi.nlm.nih.gov/pubmed/21867888
https://doi.org/10.1037//0735-7044.98.1.3
http://www.ncbi.nlm.nih.gov/pubmed/6696797
https://doi.org/10.1016/j.cub.2015.02.036
http://www.ncbi.nlm.nih.gov/pubmed/25913405
https://doi.org/10.1016/j.cobeha.2020.02.017
http://www.ncbi.nlm.nih.gov/pubmed/35419465
https://doi.org/10.1038/s41593-018-0303-1
http://www.ncbi.nlm.nih.gov/pubmed/30643291
https://doi.org/10.1038/s41593-017-0050-8
http://www.ncbi.nlm.nih.gov/pubmed/29311746
https://doi.org/10.1016/j.tics.2018.06.008
http://www.ncbi.nlm.nih.gov/pubmed/30031670
https://doi.org/10.1038/nrn.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/29213134
https://doi.org/10.1523/JNEUROSCI.2742-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18305258
https://doi.org/10.1016/j.cobeha.2017.07.015
https://doi.org/10.1016/j.cobeha.2017.07.015
https://doi.org/10.1016/j.neuron.2018.03.045
http://www.ncbi.nlm.nih.gov/pubmed/29772201
https://doi.org/10.1016/j.tics.2020.10.004
http://www.ncbi.nlm.nih.gov/pubmed/33248898
https://doi.org/10.1016/j.tics.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30266150
https://doi.org/10.1523/JNEUROSCI.2028-11.2011
https://doi.org/10.1523/JNEUROSCI.2028-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22114288
https://doi.org/10.1016/j.tics.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25843543
https://doi.org/10.1016/j.tics.2013.03.005
http://www.ncbi.nlm.nih.gov/pubmed/23597720
https://doi.org/10.1037//0097-7403.24.1.15
http://www.ncbi.nlm.nih.gov/pubmed/9438963
https://doi.org/10.1016/0001-6918(73)90020-6
https://doi.org/10.1016/0001-6918(73)90020-6
http://www.ncbi.nlm.nih.gov/pubmed/4743299
https://doi.org/10.1073/pnas.1610706114
http://www.ncbi.nlm.nih.gov/pubmed/28007982
https://doi.org/10.1098/rstb.2016.0049
https://doi.org/10.1098/rstb.2016.0049
http://www.ncbi.nlm.nih.gov/pubmed/27872368
https://doi.org/10.1523/JNEUROSCI.2618-15.2015
https://doi.org/10.1523/JNEUROSCI.2618-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26468191
https://doi.org/10.1016/j.cobeha.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25750931
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18032658
https://doi.org/10.1126/science.aaw5181
http://www.ncbi.nlm.nih.gov/pubmed/31249030


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Polti, Nau et al. eLife 2022;11:e79027. DOI: https://​doi.​org/​10.​7554/​eLife.​79027 � 22 of 22

Shikano Y, Ikegaya Y, Sasaki T. 2021. Minute-encoding neurons in hippocampal-striatal circuits. Current Biology 
31:1438–1449.. DOI: https://doi.org/10.1016/j.cub.2021.01.032, PMID: 33545048

Shimbo A, Izawa EI, Fujisawa S. 2021. Scalable representation of time in the hippocampus. Science Advances 
7:eabd7013. DOI: https://doi.org/10.1126/sciadv.abd7013, PMID: 33536211

Shohamy D, Wagner AD. 2008. Integrating memories in the human brain: hippocampal-midbrain encoding of 
overlapping events. Neuron 60:378–389. DOI: https://doi.org/10.1016/j.neuron.2008.09.023, PMID: 18957228

Strange BA, Witter MP, Lein ES, Moser EI. 2014. Functional organization of the hippocampal longitudinal axis. 
Nature Reviews. Neuroscience 15:655–669. DOI: https://doi.org/10.1038/nrn3785, PMID: 25234264

Thavabalasingam S, O’Neil EB, Lee ACH. 2018. Multivoxel pattern similarity suggests the integration of 
temporal duration in hippocampal event sequence representations. NeuroImage 178:136–146. DOI: https://​
doi.org/10.1016/j.neuroimage.2018.05.036, PMID: 29775662

Thavabalasingam S, O’Neil EB, Tay J, Nestor A, Lee ACH. 2019. Evidence for the incorporation of temporal 
duration information in human hippocampal long-term memory sequence representations. PNAS 116:6407–
6414. DOI: https://doi.org/10.1073/pnas.1819993116, PMID: 30862732

Umbach G, Kantak P, Jacobs J, Kahana M, Pfeiffer BE, Sperling M, Lega B. 2020. Time cells in the human 
hippocampus and entorhinal cortex support episodic memory. PNAS 117:28463–28474. DOI: https://doi.org/​
10.1073/pnas.2013250117, PMID: 33109718

Vikbladh OM, Meager MR, King J, Blackmon K, Devinsky O, Shohamy D, Burgess N, Daw ND. 2019. 
Hippocampal contributions to model-based planning and spatial memory. Neuron 102:683–693.. DOI: https://​
doi.org/10.1016/j.neuron.2019.02.014, PMID: 30871859

Wang J, Narain D, Hosseini EA, Jazayeri M. 2018. Flexible timing by temporal scaling of cortical responses. 
Nature Neuroscience 21:102–110. DOI: https://doi.org/10.1038/s41593-017-0028-6, PMID: 29203897

Whittington JCR, Muller TH, Mark S, Chen G, Barry C, Burgess N, Behrens TEJ. 2020. The Tolman-Eichenbaum 
machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 
183:1249–1263.. DOI: https://doi.org/10.1016/j.cell.2020.10.024, PMID: 33181068

Wiener M, Michaelis K, Thompson JC. 2016. Functional correlates of likelihood and prior representations in a 
virtual distance task. Human Brain Mapping 37:3172–3187. DOI: https://doi.org/10.1002/hbm.23232, PMID: 
27167875

Wikenheiser AM, Marrero-Garcia Y, Schoenbaum G. 2017. Suppression of ventral hippocampal output impairs 
integrated orbitofrontal encoding of task structure. Neuron 95:1197–1207.. DOI: https://doi.org/10.1016/j.​
neuron.2017.08.003, PMID: 28823726

Wimmer GE, Daw ND, Shohamy D. 2012. Generalization of value in reinforcement learning by humans. The 
European Journal of Neuroscience 35:1092–1104. DOI: https://doi.org/10.1111/j.1460-9568.2012.08017.x, 
PMID: 22487039

Wirth S, Avsar E, Chiu CC, Sharma V, Smith AC, Brown E, Suzuki WA. 2009. Trial outcome and associative 
learning signals in the monkey hippocampus. Neuron 61:930–940. DOI: https://doi.org/10.1016/j.neuron.2009.​
01.012, PMID: 19324001

Wittmann BC, Schott BH, Guderian S, Frey JU, Heinze HJ, Düzel E. 2005. Reward-Related fMRI activation of 
dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. 
Neuron 45:459–467. DOI: https://doi.org/10.1016/j.neuron.2005.01.010, PMID: 15694331

Wolpert DM, Diedrichsen J, Flanagan JR. 2011. Principles of sensorimotor learning. Nature Reviews. 
Neuroscience 12:739–751. DOI: https://doi.org/10.1038/nrn3112, PMID: 22033537

World Medical Association. 2013. World medical association declaration of helsinki: ethical principles for 
medical research involving human subjects. JAMA 310:2191–2194. DOI: https://doi.org/10.1001/jama.2013.​
281053, PMID: 24141714

Yin B, Troger AB. 2011. Exploring the 4th dimension: hippocampus, time, and memory revisited. Frontiers in 
Integrative Neuroscience 5:36. DOI: https://doi.org/10.3389/fnint.2011.00036, PMID: 21886612

https://doi.org/10.7554/eLife.79027
https://doi.org/10.1016/j.cub.2021.01.032
http://www.ncbi.nlm.nih.gov/pubmed/33545048
https://doi.org/10.1126/sciadv.abd7013
http://www.ncbi.nlm.nih.gov/pubmed/33536211
https://doi.org/10.1016/j.neuron.2008.09.023
http://www.ncbi.nlm.nih.gov/pubmed/18957228
https://doi.org/10.1038/nrn3785
http://www.ncbi.nlm.nih.gov/pubmed/25234264
https://doi.org/10.1016/j.neuroimage.2018.05.036
https://doi.org/10.1016/j.neuroimage.2018.05.036
http://www.ncbi.nlm.nih.gov/pubmed/29775662
https://doi.org/10.1073/pnas.1819993116
http://www.ncbi.nlm.nih.gov/pubmed/30862732
https://doi.org/10.1073/pnas.2013250117
https://doi.org/10.1073/pnas.2013250117
http://www.ncbi.nlm.nih.gov/pubmed/33109718
https://doi.org/10.1016/j.neuron.2019.02.014
https://doi.org/10.1016/j.neuron.2019.02.014
http://www.ncbi.nlm.nih.gov/pubmed/30871859
https://doi.org/10.1038/s41593-017-0028-6
http://www.ncbi.nlm.nih.gov/pubmed/29203897
https://doi.org/10.1016/j.cell.2020.10.024
http://www.ncbi.nlm.nih.gov/pubmed/33181068
https://doi.org/10.1002/hbm.23232
http://www.ncbi.nlm.nih.gov/pubmed/27167875
https://doi.org/10.1016/j.neuron.2017.08.003
https://doi.org/10.1016/j.neuron.2017.08.003
http://www.ncbi.nlm.nih.gov/pubmed/28823726
https://doi.org/10.1111/j.1460-9568.2012.08017.x
http://www.ncbi.nlm.nih.gov/pubmed/22487039
https://doi.org/10.1016/j.neuron.2009.01.012
https://doi.org/10.1016/j.neuron.2009.01.012
http://www.ncbi.nlm.nih.gov/pubmed/19324001
https://doi.org/10.1016/j.neuron.2005.01.010
http://www.ncbi.nlm.nih.gov/pubmed/15694331
https://doi.org/10.1038/nrn3112
http://www.ncbi.nlm.nih.gov/pubmed/22033537
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1001/jama.2013.281053
http://www.ncbi.nlm.nih.gov/pubmed/24141714
https://doi.org/10.3389/fnint.2011.00036
http://www.ncbi.nlm.nih.gov/pubmed/21886612

	Rapid encoding of task regularities in the human hippocampus guides sensorimotor timing
	Editor's evaluation
	Introduction
	Results
	Time-to-contact (TTC) estimation task
	Behavioral feedback predicts hippocampal activity
	Feedback-dependent hippocampal functional connectivity
	Hippocampal activity explains accuracy and biases in task performance
	Eye tracking: no relevant biases in viewing behavior

	Discussion
	Spatiotemporal coding in the hippocampus
	The role of feedback in timed motor actions
	A trade-off between specificity and regularization?
	Conclusion

	Materials and methods
	Participants
	Task
	Behavioral analysis
	Imaging data acquisition and preprocessing
	Regions of interest definition and analysis
	Brain activity as a function of feedback on the previous trial
	Hippocampal functional connectivity as a function of previous-trial feedback
	Brain activity as a function of current-trial performance and feedback
	Brain activity as a function of improvements in behavioral performance across trials
	Hippocampal functional connectivity as a function of TTC-independent updating
	Brain activity as a function of behavioral performance and as a function of the behavioral regression effect
	Eye tracking: Fixation quality does not affect the interpretation of our results

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


