83 research outputs found

    Trust in Crowds: probabilistic behaviour in anonymity protocols

    No full text
    The existing analysis of the Crowds anonymity protocol assumes that a participating member is either ‘honest’ or ‘corrupted’. This paper generalises this analysis so that each member is assumed to maliciously disclose the identity of other nodes with a probability determined by her vulnerability to corruption. Within this model, the trust in a principal is defined to be the probability that she behaves honestly. We investigate the effect of such a probabilistic behaviour on the anonymity of the principals participating in the protocol, and formulate the necessary conditions to achieve ‘probable innocence’. Using these conditions, we propose a generalised Crowds-Trust protocol which uses trust information to achieves ‘probable innocence’ for principals exhibiting probabilistic behaviour

    Message Quality for Ambient System Security

    Get PDF
    In ambient systems, a principal may be a physical object whose identity does not convey useful information for taking security decisions. Thus, establishing a trusted channel with a device depends more on the device being able to demonstrate what it does, rather than who it is. This paper proposes a security model that allows a principal to establish the intent of an adversary and to make the adversary prove its trustworthiness by furnishing proof of current and past behavior

    Optimistic Non-repudiation Protocol Analysis

    Get PDF
    The original publication is available at www.springerlink.com ; ISBN 978-3-540-72353-0 (Pring) 0302-9743 (Online) 1611-3349International audienceNon-repudiation protocols with session labels have a number of vulnerabilities. Recently Cederquist, Corin and Dashti have proposed an optimistic non-repudiation protocol that avoids altogether the use of session labels. We have specified and analysed this protocol using an extended version of the AVISPA Tool and one important fault has been discovered. We describe the protocol, the analysis method, show two attack traces that exploit the fault and propose a correction to the protocol

    Right Handed Weak Currents in Sum Rules for Axialvector Constant Renormalization

    Get PDF
    The recent experimental results on deep inelastic polarized lepton scattering off proton, deuteron and 3^{3}He together with polari% zed neutron β\beta-decay data are analyzed. It is shown that the problem of Ellis-Jaffe and Bjorken sum rules deficiency and the neutron paradox could be solved simultaneously by assuming the small right handed current (RHC) admixture in the weak interaction Lagrangian. The possible RHC impact on pion-nucleon σ\sigma-term and Gamow-Teller sum rule for (p,n)(p,n) nuclear reactions is pointed out.Comment: to be published in Phys. Rev. Lett. LaTeX, 8 pages, 21 k

    Automatic Methods for Analyzing Non-repudiation Protocole with an Active Intruder

    Get PDF
    International audienceNon-repudiation protocols have an important role in many areas where secured transactions with proofs of participation are necessary. Formal methods are clever and without error, therefore using them for verifying such protocols is crucial. In this purpose, we show how to partially represent non-repudiation as a combination of authentications on the Fair Zhou-Gollmann protocol. After discussing the limitations of this method, we define a new one based on the handling of the knowledge of protocol participants. This second method is general and of natural use, as it consists in adding simple annotations in the protocol specification. It is very easy to implement in tools able to handle participants knowledge. We have implemented it in the AVISPA Tool and analyzed the optimistic Cederquist-Corin-Dashti protocol, discovering two attacks. This extension of the AVISPA Tool for handling non-repudiation opens a highway to the specification of many other properties, without any more change in the tool itself

    Hierarchical Combination of Intruder Theories

    Full text link
    Abstract. Recently automated deduction tools have proved to be very effective for detecting attacks on cryptographic protocols. These analysis can be improved, for finding more subtle weaknesses, by a more accurate modelling of operators employed by protocols. Several works have shown how to handle a single algebraic operator (associated with a fixed intruder theory) or how to combine several operators satisfying disjoint theories. However several interesting equational theories, such as exponentiation with an abelian group law for exponents remain out of the scope of these techniques. This has motivated us to introduce a new notion of hierarchical combination for intruder theories and to show decidability results for the deduction problem in these theories. Under a simple hypothesis, we were able to simplify this deduction problem. This simplification is then applied to prove the decidability of constraint systems w.r.t. an intruder relying on exponentiation theory.

    A Universally Composable Framework for the Privacy of Email Ecosystems

    Get PDF
    Email communication is amongst the most prominent online activities, and as such, can put sensitive information at risk. It is thus of high importance that internet email applications are designed in a privacy-aware manner and analyzed under a rigorous threat model. The Snowden revelations (2013) suggest that such a model should feature a global adversary, in light of the observational tools available. Furthermore, the fact that protecting metadata can be of equal importance as protecting the communication context implies that end-to-end encryption may be necessary, but it is not sufficient. With this in mind, we utilize the Universal Composability framework [Canetti, 2001] to introduce an expressive cryptographic model for email ``ecosystems\u27\u27 that can formally and precisely capture various well-known privacy notions (unobservability, anonymity, unlinkability, etc.), by parameterizing the amount of leakage an ideal-world adversary (simulator) obtains from the email functionality. Equipped with our framework, we present and analyze the security of two email constructions that follow different directions in terms of the efficiency vs. privacy tradeoff. The first one achieves optimal security (only the online/offline mode of the users is leaked), but it is mainly of theoretical interest; the second one is based on parallel mixing [Golle and Juels, 2004] and is more practical, while it achieves anonymity with respect to users that have similar amount of sending and receiving activity

    Probable Innocence and Independent Knowledge

    Get PDF
    International audienceWe analyse the \textsc{Crowds} anonymity protocol under the novel assumption that the attacker has independent knowledge on behavioural patterns of individual users. Under such conditions we study, reformulate and extend Reiter and Rubin's notion of probable innocence, and provide a new formalisation for it based on the concept of protocol vulnerability. Accordingly, we establish new formal relationships between protocol parameters and attackers' knowledge expressing necessary and sufficient conditions to ensure probable innocence

    Modular Verification of Protocol Equivalence in the Presence of Randomness

    Get PDF
    Security protocols that provide privacy and anonymity guarantees are growing increasingly prevalent in the online world. The highly intricate nature of these protocols makes them vulnerable to subtle design flaws. Formal methods have been successfully deployed to detect these errors, where protocol correctness is formulated as a notion of equivalence (indistinguishably). The high overhead for verifying such equivalence properties, in conjunction with the fact that protocols are never run in isolation, has created a need for modular verification techniques. Existing approaches in formal modeling and (compositional) verification of protocols for privacy have abstracted away a fundamental ingredient in the effectiveness of these protocols, randomness. We present the first composition results for equivalence properties of protocols that are explicitly able to toss coins. Our results hold even when protocols share data (such as long term keys) provided that protocol messages are tagged with the information of which protocol they belong to.Ope
    • …
    corecore