
HAL Id: inria-00176333
https://hal.inria.fr/inria-00176333

Submitted on 3 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimistic Non-repudiation Protocol Analysis
Judson Santos Santiago, Laurent Vigneron

To cite this version:
Judson Santos Santiago, Laurent Vigneron. Optimistic Non-repudiation Protocol Analysis. Informa-
tion Security Theory and Practices - Smart Cards, Mobile and Ubiquitous Computing Systems, May
2007, Heraklion, Greece. pp.90-101, �10.1007/978-3-540-72354-7_8�. �inria-00176333�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50358397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00176333
https://hal.archives-ouvertes.fr

Optimistic Non-Repudiation Protocol Analysis

Judson Santiago and Laurent Vigneron⋆

LORIA – Nancy Université
{laurent.vigneron}@loria.fr

Abstract. Non-repudiation protocols with session labels have a number of vulnerabili-
ties. Recently Cederquist, Corin and Dashti have proposed an optimistic non-repudiation
protocol that avoids altogether the use of session labels. We have specified and analysed
this protocol using an extended version of the AVISPA Tool and one important fault has
been discovered. We describe the protocol, the analysis method, show two attack traces
that exploit the fault and propose a correction to the protocol.

1 Introduction

While security issues such as secrecy and authentication have been studied intensively [11],
most interest in non-repudiation protocols has only come in recent years, notably in the
yearly 1990s with the explosion of Internet services and electronic transactions.1

Non-repudiation protocols must ensure that when two parties exchange informa-
tion over a network, neither one nor the other can deny having participated to this
communication. Consequently a non-repudiation protocol must generate evidences of
participation to be used in case of a dispute. With the advent of digital signatures and
public key cryptography, the base for non-repudiation services was created. Given an
adequate public key infrastructure, one having a signed message has an evidence of the
participation and the identity of his party [7].

While non-repudiation can be provided by standard cryptographic mechanisms like
digital signatures, fairness is more difficult to achieve: no party should be able to reach a
point where they have the evidence or the message they require without the other party
also having their required evidence. Fairness is not always required for non-repudiation
protocols, but it is usually desirable.

A variety of protocols has been proposed in the literature to solve the problem of
fair message exchange with non-repudiation. The first solutions were based on a gradual
exchange of the expected information [7]. However this simultaneous secret exchange
is troublesome for actual implementations because fairness is based on the assumption
of equal computational power on both parties, which is very unlikely in a real world
scenario. A possible solution to this problem is the use of a trusted third party (TTP),
and in fact it has been shown that it is impossible to achieve fair exchange without a
TTP [10, 9]. The TTP can be used as a delivery agent to provide simultaneous share

⋆ This work is supported by the ACI Sécurité SATIN and the RNTL project 03V360 Prouvé.
1 See http://www.lsv.ens-cachan.fr/~kremer/FXbib/references.php for a detailed list of publica-

tions.

of evidences. The Fair Zhou-Gollmann protocol [16] is the most known example of non-
repudiation protocol, using a TTP as a delivery agent of a key for decrypting the message
sent by one agent to another agent; a significant amount of work has been done over
this protocol and its derivations [2, 6, 13, 17]. However, instead of passing the complete
message through the TTP and thus creating a possible bottleneck, recent evolution of
these protocols resulted in efficient, optimistic versions, in which the TTP is only involved
in case anything goes wrong. Resolve and abort sub-protocols must guarantee that every
party can complete the protocol in a fair manner and without waiting for actions of the
other party (timeliness).

One of these recent protocols, which we describe in the following section, is the opti-
mistic Cederquist-Corin-Dashti (CCD) non-repudiation protocol [3]. The CCD protocol
has the advantage of not using session labels, contrariwise to many others in the litera-
ture [7, 8, 16, 13]. A session label typically consists of a hash of all message components.
Gürgens et al. [6] have shown a number of vulnerabilities associated to the use of session
labels and, to our knowledge, the CCD protocol is the only optimistic non-repudiation
protocol that avoids altogether the use of session labels.

In this paper we describe the CCD non-repudiation protocol, present the analysis
method and explain two attack traces of an important flaw discovered in this protocol.
The attack has been found after the specification and analysis of the protocol in the
AVISPA Tool [1]2, using an extended version of the AtSe engine [15] that supports
non-repudiation analysis. We propose a correction for the CCD protocol that have been
successfully analysed for many scenarios.

2 The CCD Protocol

The CCD non-repudiation protocol has been created for permitting an agent A to send
a message M to agent B in a fair manner. This means that agent A should get an
evidence of receipt of M by B (EOR) if and only if B has really received M and the
evidence of origin from A (EOO). EOR permits A to prove that B has received M , while
EOO permits B to prove that M has been sent by A. The protocol is divided into three
sub-protocols: the main protocol, an abort sub-protocol and a resolve sub-protocol.

2.1 Definition of the Main Protocol

This main protocol describes the sending of M by A to B and the exchange of evidences
in the case where both agents can complete the entire protocol. If a problem happens
to one of the agents, in order to finish properly the protocol, the agents can exchange
messages with a trusted third party (TTP) by executing the abort or the resolve sub-
protocol.

The main protocol is therefore composed of the following messages exchanges, de-
scribed in the Alice&Bob notation:

2 http://www.avispa-project.org

1. A → B : {M}K .EOOM where EOOM = {B.TTP.H({M}K).{K.A}Kttp}inv(Ka)

2. B → A : EORM where EORM = {EOOM}inv(Kb)

3. A → B : K

4. B → A : EORK where EORK = {A.H({M}K).K}
inv(Kb)

where K is a symmetric key freshly generated by A, H is a one-way hash function, Kg

is the public key of agent g and inv(Kg) is the private key of agent g (used for signing
messages).
Note that we assure that all public keys are known by all agents (including dishonest
agents).

In the first message, A sends the message M encrypted by K and the evidence of
origin for B (message signed by A, so decryptable by B). In this evidence, B can check
his identity, learns the name of the TTP, can check that the hash code is the result of
hashing the first part of the message, but cannot decrypt the last part of the evidence;
this last part may be useful if any of the other sub-protocols is used.
B answers by sending the evidence of receipt for A, A checking that EORM is EOOM

signed by B.
In the third message, A sends the key K, permitting B to discover the message M .
Finally, B sends to A another evidence of receipt, permitting A to check that the sym-
metric key has been received by B.

2.2 The Abort Sub-Protocol

The abort sub-protocol is executed by agent A in case he does not receive the message
EORM at step 2 of the main protocol. The purpose of this sub-protocol is to cancel the
messages exchange.

1. A → TTP : {abort.H({M}K).B.{K.A}Kttp}inv(Ka)

2. TTP → A :

ETTP where ETTP = {A.B.K.H({M}K)}inv(Kttp)

if resolved(A.B.K.H({M}K))
ABTTP where ABTTP = {A.B.H({M}K).{K.A}Kttp}inv(Kttp)

otherwise

In this sub-protocol, A sends to the TTP an abort request, containing the abort label
and some information about the protocol session to be aborted: the hash of the encrypted
message, the name of the other agent (B), and the key used for encrypting M .
According to what happened before, the TTP has two possible answers: if this is the first
problem received by the TTP for this protocol session, the TTP sends a confirmation of
abortion, and stores in its database that this protocol session has been aborted; but if
the TTP has already received a request for resolving this protocol session, he sends to
A the information for completing his evidence of receipt by B.

2.3 The Resolve Sub-Protocol

The role of this second sub-protocol is to permit agents A and B to finish the protocol
in a fair manner, if the main protocol cannot be run until its end by some of the parties.

For example, if B does not get K or if A does not get EORK , they can invoke the resolve

sub-protocol.

1. G → TTP : EORM

2. TTP → G :

{

ABTTP if aborted(A.B.K.H({M}K))
ETTP otherwise

where G stands for A or B.
A resolve request is done by sending EORM to the TTP. If the protocol session has

already been aborted, the TTP answers by the abortion confirmation. If this is not the
case, the TTP sends ETTP so that the user could complete its evidence of receipt (if G

is A) or of origin (if G is B). Then the TTP stores in its database that this protocol
session has been resolved.

2.4 Agents’ Evidences

Non-repudiation protocols require evidence of receipt (EOR) and evidence of origin
(EOO). All parties have to agree that these evidences constitute a valid proof of partici-
pation in the protocol. In the case of a dispute, the parties should present their evidences
to an external judge. Ideally the judge should be capable of deciding the matter by ex-
ecuting a verification algorithm over the evidences presented by each party.

For the CCD protocol, the evidence of receipt for A is {M}K and EORM , plus either
EORK or ETTP . The evidence of origin for B is {M}K , EOOM and K. At the end of
the protocol execution, each agent must have all the parts that compose his evidence.
The choice of these evidences is not discussed here, see [3] for more information.

3 Analysis of the CCD Protocol

The CCD protocol was formally analysed by its authors in [3] and no attack has been
found for the following scenarios: A and B honest; A honest, B dishonest; and B dis-
honest, A honest.

But our analysis shows that there is a serious flaw in the protocol, even when the
agents act honestly. The attack occurs because one agent does not get all the required
information for building its evidence when the protocol finishes by the intervention of the
TTP. We describe in Sections 3.3 and 3.4 two scenarios that lead to an unfair situation
for the agent playing the role A, thus contradicting the result of [3] for the same fairness
property. But before presenting the attacks, we describe in the next sections the AVISPA
Tool analysis method and the representation of the non-repudiation properties in the
AVISPA Tool.

3.1 Analysis Method

Our analysis method is based on the technology build into the AVISPA Tool [1]: the
protocol is specified in the High Level Protocol Specification Language (HLPSL) [4],
translated into a state transition system called the intermediate format (IF) and fed

to one of the four analysis engines available with the tool. In this work, the Attack
Searcher (AtSe) engine [15] has been used. The AtSe analysis engine implements the so-
called lazy intruder model [5], which greatly increases the performance of the searching
process. Previously only used to analyse secrecy and authentication properties, we have
extended this engine to support a subset of Linear Temporal Logics (LTL) formulae,
allowing the specification and analysis of a broader spectrum of properties, including
the fairness property for non-repudiation.

3.2 Description of Non-repudiation Properties

The AVISPA Tool was designed to analyse complex Internet security protocols, like the
protocols described by the Internet Engineering Task Force (IETF). Even though the
tool has support for the specification of arbitrarily complex properties by the use of
LTL formulae, no analysis engine of the AVISPA Tool actually uses this power. Na-
tively, properties are specified by the use of macros and only secrecy and authentication
properties are supported.

In a previous work [12], we have represented non-repudiation properties as a com-
bination of authentication properties. This representation has been applied to the Fair
Zhou-Gollmann protocol [16] and has given good results, raising a problem in the proto-
col. But because of the implementation of the intruder strategy in the AVISPA Tool, the
notion of dishonest agent could not be fully expressed (see [12] for more details). This
is the reason why we have decided to use LTL formulae for describing non-repudiation
properties in HLPSL, and to extend AtSe for considering this kind of formulae.

The main role of a non-repudiation protocol is to give evidences of non-repudiation
to the parties involved in the protocol. To analyse this kind of protocol, one must ver-
ify which participants have their non-repudiation evidences at the end of the proto-
col execution. If the originator has all the parts of its non-repudiation evidence, then
non-repudiation of reception is guaranteed. If the recipient has all the parts of its non-
repudiation evidence, then non-repudiation of origin is guaranteed. If both parties (or
none of them) have their evidences, fairness is guaranteed. In other words, to analyse
non-repudiation, we need to verify if a set of terms is known by an agent at the end of
the protocol execution.

To analyse non-repudiation in the AVISPA Tool, we have to find a way to express the
knowledge of the agents by a predicate added in some protocol transitions, and to find
a way to express the non-repudiation properties by the use of these predicates. We have
then introduced the predicates aknows (for agent knowledge) and iknows (for intruder
knowledge) in all the levels of the AVISPA Tool, namely in the specification language
(HLPSL), in the intermediate format (IF) and in the analysis engine (AtSe). Note that
iknows was already used in the IF and in AtSe. As with the other predicates, aknows and
iknows are used in the LTL description of the properties (non-repudiation properties in
our case) and to mark the protocol specification.

Definition 1 (aknows). Le A be a set of agents playing a finite number of sessions S
of a protocol, T a set of terms sent in the messages of this protocol and E the subset
of terms t ∈ T that are part of the evidences of non-repudiation in the protocol. For an
agent a ∈ A, Ea is the set of terms t ∈ E that constitute the evidence of non-repudiation
for the agent a. The predicate aknows(a, b, s, t) with a, b ∈ A, s ∈ S and t ∈ T , express
that the agent a, playing with agent b in the session s, knows the term t.

Definition 2 (Non-repudiation of origin or receipt). If at the end of the execution
of agent a in protocol session s, the predicate aknows(a, b, s, t) is true for all t ∈ Ea,
then the non-repudiation property (of origin or receipt, according to the role of a in the
protocol) is satisfied. Otherwise, the property of non-repudiation for agent a is false.

The fairness of the non-repudiation property is true only when both agents know
their non-repudiation evidences, or when neither one nor the other knows his evidence.
But for the properties of non-repudiation of origin and non-repudiation of receipt, the
knowledge of one agent is enough to decide if the property is true or not.

With the predicates aknows and iknows, we know exactly when an agent learns a
term t and thus we can automatically verify the non-repudiation properties using the
knowledge of the agents. If at the end of the execution of an agent, there is no aknows

for the non-repudiation evidences of that agent, then we have a non-repudiation of origin
or non-repudiation of receipt attack.

Definition 3 (Fairness). If at the end of the execution of agent a in session s, the
predicate aknows(a, b, s, t) is true for all t ∈ Ea, then the fairness property is true from
the point of view of a. And if the fairness property is true from the point of view of the
other agent, say b, the protocol session is said to be fair. The protocol is also fair if none
of the agents knows all his evidences. Otherwise, the fairness property is false.

Even if the fairness property needs data from both agents, when the predicate aknows
is true for one agent, agent a for example, we can guarantee that the property is satisfied
from the point of view of a and concentrate the analysis on the property by the point
of view of agent b at the end of his execution. If one agent is dishonest or personified
by the intruder, say b for example, the predicate aknows(b, a, s, u) must be replaced by
iknows(u) and the agent name is written i (the intruder name). This last predicate is
satisfied if the intruder knows (or can build from his knowledge) the term u.

The AtSe analysis engine has been extended to analyse properties described as LTL
formulae using aknows and iknows predicates. The non-repudiation fairness for the CCD
protocol is described by the following LTL formula:

�

0

B

B

@

0

B

B

@

(aknows(A, B, s, {M}
K

) ∧ aknows(A, B, s, EORM) ∧
(aknows(A, B, s, EORK) ∨ aknows(A, TTP, s, ETTP))) ∨

(iknows({M}
K

) ∧ iknows(EORM) ∧ A = i ∧
(iknows(EORK) ∨ iknows(ETTP)))

1

C

C

A

⇒

0

B

B

@

aknows(B, A, s, {M}
K

) ∧
aknows(B, A, s, EOOM) ∧
(aknows(B, A, s, K) ∨
aknows(B, TTP, s, ETTP))

1

C

C

A

1

C

C

A

Basically the property states that if A knows the EOR evidence ({M}K , EORM , and
EORK or ETTP) or if the intruder, playing the role A, knows this evidence, then B

must know the EOO evidence. There is a similar property for B: if B knows the EOO
evidence ({M}K , EOOM , and K or ETTP) or if the intruder knows it, then A must
know the EOR evidence:

�

0

B

B

@

0

B

B

@

(aknows(B, A, s, {M}
K

) ∧ aknows(B, A, s, EOOM) ∧
(aknows(B, A, s, K) ∨ aknows(B, TTP, s, ETTP))) ∨

(iknows({M}
K

) ∧ iknows(EOOM) ∧ B = i ∧
(iknows(K) ∨ iknows(ETTP)))

1

C

C

A

⇒

0

B

B

@

aknows(A, B, s, {M}
K

) ∧
aknows(A, B, s, EORM) ∧
(aknows(A, B, s, EORK) ∨
aknows(A, TTP, s, ETTP))

1

C

C

A

1

C

C

A

The protocol was specified in the HLPSL language and analysed with the new version
of the AtSe engine. The attacks found in the analysis are described in the following
sections.

3.3 Delayed Abort Request Attack

When A does not receive EORM from B, the abort sub-protocol is invoked. When B

does not receive K from A, the resolve sub-protocol is invoked. So, if the messages
EORM and K are not sent or delayed in the insecure channel between A and B (either
because of a network problem, or intercepted by the intruder), both agents will query
the TTP, A trying to abort and B trying to resolve the protocol.

The problem arises if the abort request does not reach the TTP before the resolve
request. In this case, the TTP will resolve the protocol, permitting B to get all the
knowledge for building the evidence of origin. Because of this previous resolve request
by B, the abort request by A will not lead to the abortion of the protocol. If the TTP
receives this abort request, he will send ETTP to A, but as A does not (and cannot)
know EORM , he cannot build the evidence of receipt. So, at the end of the execution,
there is a fairness attack, as B can prove that A has sent M , but A cannot prove that
B has received it.
The attack trace given below, automatically found by AtSe, is even more surprising, as
explained hereafter. In this trace, i(G) means that the intruder impersonated agent G;
and for a better clarity, the detailed contents of messages have been replaced by more
explicit names.

1. A -> i(B) : {M}_K.EOOM

*** timeout for A ***

2. A -> i(TTP) : ABORT

3. i(A) -> B : {M}_K.EOOM

4. B -> i(A) : EORM

5. i(A) -> TTP : RESOLVE (=EORM)

6. TTP -> i(A) : ETTP

*** timeout for B ***

7. B -> i(TTP) : RESOLVE

8. i(TTP) -> A : ETTP

9. i(TTP) -> B : ETTP

The first step is the standard one, but the intruder intercepts the message before it
reaches B. Without any answer to his message, A decides to abort the protocol, message

also intercepted by i (step 2). In step 3, i impersonating A forwards the message 1 to B,
who answers with EORM (step 4). The intruder uses this last message for pretending
to the TTP that A wants to resolve the protocol (step 5). As the TTP has not received
the abort request of A, he answers by sending ETTP (step 6). B not having any answer
to his EORM message, he decides to ask the TTP for resolving the protocol (step 7).
Then the intruder sends the TTP resolve answer to A and B (steps 8 and 9).

The originality of this attack trace is that, at the end:

– A will guess (according to the answer received to his abort request) that the protocol
has been resolved by B, so he will assume that B knows M and can build the proof
that A has sent it; but A cannot prove this;

– B has resolved the protocol and has received from the TTP the information for
getting M and building the proof that A has sent M ; but he does not know that A

does not have his proof;

– the TTP will think that A has asked for the protocol to be resolved, followed by B;
so for him, both A and B can build their evidences.

So, this trace shows that the CCD protocol is not fair, even if both agents A and B

are honest. The attack is due to a malicious intruder, and the TTP is of no help for
detecting the problem.

3.4 Dishonest Agent Attack

A variant of the previous attack has also been discovered by AtSe. It happens when
agent A plays the protocol with a dishonest agent B (called the intruder and names i).
As soon as i has received the first message from A, he builds EORM and sends it to
the TTP as resolve request. When A decides to abort the protocol, this is too late: the
protocol has already been resolved, the intruder can get M and build the proof that A

has sent M , and A cannot build the evidence of receipt.

1. A -> i : {M}_K.EOOM

2. i -> TTP : RESOLVE

3. TTP -> i : ETTP

*** timeout for A ***

4. A -> TTP : ABORT

5. TTP -> A : ETTP

4 Correction of the CCD Protocol

In this section, we first discuss the role of the trusted third party for trying to solve
the problems raised by the attacks found. Then we describe a correction of the abort

sub-protocol and report the new analyses done, in which no attack has been found.

4.1 About the TTP Role

Both attacks described in the previous section come from the same flaw: the TTP does
not give EORM to agent A when the protocol is already resolved and A tries to abort
it. However, the TTP has received EORM in the resolve request, so one can argue that
A only needs to know ETTP to prove that B knows the message M : A knowing ETTP

means that TTP knows EORM , and consequently A could know EORM by asking it to
the TTP, in case of a dispute.

From B’s side, if B resolves the protocol and gets the message ETTP , this means that
B knows EORM , and according to the protocol, owning EORM means owning EOOM

and MK . If the TTP stores EORM in its database for every resolved transaction, A

could try to prove that B knows M by requesting to the TTP a proof that EORM is
known by B.

If we consider this situation acceptable, and if we prove that A knowing ETTP implies
B also knowing ETTP and MK , we can say that the protocol is fair even when A only
receives ETTP as evidence of receipt.

But this situation is not acceptable, first because accepting ETTP as an evidence of
receipt puts extra importance on the TTP. The evidences should be strong enough to
prove participation in the protocol without the need of using TTP’s knowledge as part
of the proof. Second, the TTP would need to store all EORM messages for all resolved
sessions of the protocol. And last, without EORM we cannot prove that B has agreed
on the use of the agent TTP as the trusted third party: there is no message signed by
B that contains the name of the TTP. So ETTP cannot be a proof of receipt without
EORM .

This is why we propose some changes to correct this flaw in the protocol.

4.2 Correction of the abort Sub-protocol

To correct the protocol, we need to change the abort sub-protocol to provide the complete
EOR evidence to A, no matter the sequence of abort and resolve requests in the session
of the protocol. Below we present the new version of the abort sub-protocol.

1. A → TTP : {abort.H({M}K).B.{K.A}Kttp}inv(Ka)

2. TTP → A :

{

ETTP .EORM if resolved(A.B.K.H({M}K))
ABTTP otherwise

Messages ETTP , EORM and ABTTP are the same as in the original protocol. The only
change is the addition of EORM message in the TTP’s answer to A when the sub-
protocol is invoked and the TTP has already resolved the session (and stored EORM

together with the resolved predicate in its database).

We have specified and analysed the corrected protocol. An extended number of sce-
narios has been checked, compared to the original work of Cederquist et al. [3], including
two-sessions scenarios where the sessions are run in parallel.

One-session scenarios. We have analysed the common one-session scenarios: A and B
honest, A honest and B dishonest, A dishonest and B honest. In our analysis approach,
the intruder impersonates the dishonest agents. For all three scenarios the fairness prop-
erty could not be falsified.

Two-sessions scenarios. We have also analysed some critical two-sessions scenarios: A
and B honest in parallel with A honest and B dishonest; A and B honest in parallel with
A dishonest and B honest; A honest and B dishonest in parallel with A dishonest and
B honest. When running sessions in parallel, the intruder has an improved knowledge
and he can try, for example, to use knowledge/messages from one session in the other
session. Again, for those scenarios AtSe has found no fairness attack.

5 Conclusion

Non-repudiation protocols have an important role in many areas where secured transac-
tions with proofs of participation are necessary. The evidences of origin and receipt of a
message are the elements that the parties should have at the end of the communication.
The CCD protocol is a recent non-repudiation protocol that avoids the use of session
labels and distinguishes itself by the use of an optimistic approach, the Trusted Third
Party being used only in case of a problem in the execution of the main protocol.

The fairness of a non-repudiation protocol is a property difficult to analyse and there
are very few tools that can handle the automatic analysis of this property. The contri-
bution of this work is twofold. First we have extended the AVISPA Tool and one of its
analysis engines, AtSe, to implement our analysis method for the non-repudiation prop-
erties. Our method is based on the knowledge of agents and can be used to automatically
analyse non-repudiation protocols as well as contract signing protocols [14]. Second, with
this method, we have specified and analysed the CDD protocol and a serious flaw has
been found. We have proposed a correction that has been further analysed by additional
scenarios and no attack has been found.

Our representation of the non-repudiation properties has also been applied success-
fully to the Fair Zhou-Gollmann protocol [12]. We have tested other specifications of
the CCD protocol, for example with secure communication channels between agents and
the TTP, and for the original definition for the abort sub-protocol: no attack has been
found; but using such channels is not considered as acceptable, because it requires too
much work for the TTP.

The AVISPA Tool has proved its efficiency for analysing secrecy and authentication
properties of protocols. We have extended it to handle non-repudiation properties, but
by this extension, adding aknows and iknows predicates and using LTL formulae as goal,
we have open a highway to the specification of many other properties, without any more
change in the specification languages and the analysis engines. And for the analysis of
the CCD protocol, the use of LTL formulae did not have any impact on the speed of
AtSe for finding attacks (or for not finding attacks concerning the fixed version of the
protocol).

References

1. Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna, Jorge
Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, Se-
bastian Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turuani,
Luca Viganò, and Laurent Vigneron. The AVISPA Tool for the Automated Validation of Internet
Security Protocols and Applications. In Kousha Etessami and Sriram K. Rajamani, editors, Com-
puter Aided Verification, 17th International Conference, CAV 2005, volume 3576 of Lecture Notes
in Computer Science, pages 281–285, Edinburgh, Scotland, UK, 2005. Springer.

2. Giampaolo Bella and Lawrence C. Paulson. Mechanical Proofs about a Non-repudiation Protocol.
In Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in Higher Order Logics, 14th
International Conference, TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages
91–104, Edinburgh, Scotland, UK, 2001. Springer.

3. Jan Cederquist, Ricardo Corin, and Muhammad Torabi Dashti. On the Quest for Impartiality:
Design and Analysis of a Fair Non-repudiation Protocol. In Sihan Qing, Wenbo Mao, Javier Lopez,
and Guilin Wang, editors, Information and Communications Security, 7th International Conference,
ICICS 2005, volume 3783 of Lecture Notes in Computer Science, pages 27–39, Beijing, China, 2005.
Springer.

4. Yannick Chevalier, Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Jacopo Mantovani, Sebas-
tian Mödersheim, and Laurent Vigneron. A High Level Protocol Specification Language for Industrial
Security-Sensitive Protocols. In Automated Software Engineering. Proceedings of the Workshop on
Specification and Automated Processing of Security Requirements, SAPS’04, pages 193–205, Austria,
September 2004. Austrian Computer Society.

5. Yannick Chevalier and Laurent Vigneron. A Tool for Lazy Verification of Security Protocols. In 16th
IEEE International Conference on Automated Software Engineering (ASE 2001), pages 373–376, San
Diego, CA, USA, 2001. IEEE Computer Society.

6. Sigrid Gürgens, Carsten Rudolph, and Holger Vogt. On the Security of Fair Non-repudiation Pro-
tocols. In Colin Boyd and Wenbo Mao, editors, Information Security, 6th International Conference,
ISC 2003, volume 2851 of Lecture Notes in Computer Science, pages 193–207, Bristol, UK, 2003.
Springer.

7. Steve Kremer, Olivier Markowitch, and Jianying Zhou. An Intensive Survey of Fair Non-repudiation
Protocols. Computer Communications Journal, 25(17):1606–1621, 2002.

8. Olivier Markowitch and Steve Kremer. An Optimistic Non-repudiation Protocol with Transparent
Trusted Third Party. In George I. Davida and Yair Frankel, editors, Information Security, 4th
International Conference, ISC 2001, volume 2200 of Lecture Notes in Computer Science, pages 363–
378, Malaga, Spain, 2001. Springer.

9. Olivier Markowitch and Yves Roggeman. Probabilistic Non-Repudiation without Trusted Third
Party. In Second Workshop on Security in Communication Networks’99, Amalfi, Italy, 1999.

10. Henning Pagnia and Felix C. Gärtner. On the Impossibility of Fair Exchange without a Trusted
Third Party. Technical Report TUD-BS-1999-02, Darmstadt University of Technology, Darmstadt,
Germany, 1999.

11. Peter Ryan, Michael Goldsmith, Gavin Lowe, Bill Roscoe, and Steve Schneider. Modelling & Analysis
of Security Protocols. Addison Wesley, 2000.

12. Judson Santiago and Laurent Vigneron. Automatically Analysing Non-repudiation with Authen-
tication. In Proceedings of 3rd Taiwanese-French Conference on Information Technology (TFIT),
pages 541–554, Nancy, France, March 2006.

13. Steve Schneider. Formal Analysis of a Non-Repudiation Protocol. In Proceedings of The 11th
Computer Security Foundations Workshop, pages 54–65. IEEE Computer Society Press, 1998.

14. Vitaly Shmatikov and John C. Mitchell. Analysis of Abuse-Free Contract Signing. In Yair Frankel,
editor, Financial Cryptography, 4th International Conference, FC 2000, volume 1962 of Lecture
Notes in Computer Science, pages 174–191, Anguilla, British West Indies, 2000. Springer.

15. Mathieu Turuani. The CL-Atse Protocol Analyser. In Frank Pfenning, editor, Term Rewriting and
Applications, 17th International Conference, RTA 2006, volume 4098 of Lecture Notes in Computer
Science, pages 277–286, Seattle, WA, USA, 2006. Springer.

16. Jianying Zhou and Dieter Gollmann. A Fair Non-repudiation Protocol. In 1996 IEEE Symposium
on Security and Privacy, pages 55–61, Oakland, CA, USA, 1996. IEEE Computer Society.

17. Jianying Zhou and Dieter Gollmann. Towards verification of non-repudiation protocols. In Pro-
ceedings of 1998 International Refinement Workshop and Formal Methods Pacific, pages 370–380,
Canberra, Australia, September 1998.

