2,035 research outputs found
Damping of Josephson oscillations in strongly correlated one-dimensional atomic gases
We study Josephson oscillations of two strongly correlated one-dimensional
bosonic clouds separated by a localized barrier. Using a quantum-Langevin
approach and the exact Tonks-Girardeau solution in the impenetrable-boson
limit, we determine the dynamical evolution of the particle-number imbalance,
displaying an effective damping of the Josephson oscillations which depends on
barrier height, interaction strength and temperature. We show that the damping
originates from the quantum and thermal fluctuations intrinsically present in
the strongly correlated gas. Thanks to the density-phase duality of the model,
the same results apply to particle-current oscillations in a one-dimensional
ring where a weak barrier couples different angular momentum states
Single atom edge-like states via quantum interference
We demonstrate how quantum interference may lead to the appearance of robust
edge-like states of a single ultracold atom in a two-dimensional optical
ribbon. We show that these states can be engineered either within the manifold
of local ground states of the sites forming the ribbon, or of states carrying
one unit of angular momentum. In the former case, we show that the
implementation of edge-like states can be extended to other geometries, such as
tilted square lattices. In the latter case, we suggest to use the winding
number associated to the angular momentum as a synthetic dimension.Comment: 5 pages, 5 figure
On the Role of Ferromagnetic Interactions in Highly Active Mo-Based Catalysts for Ammonia Synthesis
Reactions involving nitrogen fixation and transfer are of great industrial interest. In this regard, unveiling all the physical principles that determine their activity would be enormously beneficial for the rational design of novel catalysts with improved performance. Within this context, this work explores the activity of bulk molybdenum-based transition metal nitrides in ammonia synthesis. Our results highlight that the most active compositions show increasing ferromagnetism in the metal–nitrogen bonds, which constitute the active sites. We observe that the total spin accumulated in the bonds at the active sites is a physically meaningful descriptor to discriminate optimum catalysts. Higher activities are associated with ferromagnetic phases, and the underlying reason is an enhanced overlapping of the electronic wavefunctions; which also make the reaction steps spin-sensitive. These finding provides strong evidence of the general influence of electrons magnetic moment in catalysis, being part of the specific field of spintro-catalysis
A bonding evolution theory study on the catalytic Noyori hydrogenation reaction
The electronic rearrangements involved in Noyori hydrogenation reactions with double bonds (ethene and formaldehyde) are analysed using the bonding evolution theory. The study and analysis of the changes on the electron localisation function topology along a given reaction path reveals fluxes of electron density, allowing to unambiguously identify the main chemical events happening along the chemical reactions. This analysis shows that the first hydrogen transfer (with hydride character) occurs before the transition state (TS), while the second hydrogen transfer (with proton character) takes places after having reached the TS. The lower energy barrier found for formaldehyde over ethene is explained by two reasons. First, the hydride transfer is favoured for the C = O bond over C = C due to the electrophilic character of the carbon atom. Second, a negatively charged CH3–X (X = CH2, O) hidden intermediate is formed in the proximities of the TS region. The oxygen atom is able to stabilise this negatively charged species more effectively than the CH2 group due to its higher electronegativity and the presence of V(O) lone pairs. The obtained analysis explains and rationalises catalyst chemoselectivity (C = O vs. C = C). Finally, a curly arrow representation diagram accounting for the electronic rearrangements is proposed on the basis of BET results
Thermal Excitation of Broadband and Long-range Surface Waves on SiO 2 Submicron Films
We detect thermally excited surfaces waves on a submicron SiO 2 layer,
including Zenneck and guided modes in addition to Surface Phonon Polaritons.
The measurements show the existence of these hybrid thermal-electromagnetic
waves from near-(2.7 m) to far-(11.2 m) infrared. Their propagation
distances reach values on the order of the millimeter, several orders of
magnitude larger than on semi-infinite systems. These two features, spectral
broadness and long range propagation, make these waves good candidates for
near-field applications both in optics and thermics due to their dual nature.Comment: Applied Physics Letters, American Institute of Physics, 201
Stabilizing s-hole dimethyl interactions
Methyl groups bound to electronegative atoms, such as N or O, are recognized to participate in tetrel bonding as Lewis acids. On the other hand, the capability of methyl groups bound to electropositive atoms, such as B or Al, to act as Lewis bases has been recently reported. Herein, we analyze the combination of these two behaviors to establish attractive methyl···methyl interactions. We have explored the Cambridge Structural Database to find experimental examples of these dimethyl-bound systems, finding a significant degree of directionality in the relative disposition of the two methyl groups. Moreover, we have carried out a comprehensive computational analysis at the DFT level of the dimethyl interactions, including the natural bond orbital, energy decomposition analysis, and topological analysis of the electron density (QTAIM and NCI). The dimethyl interaction is characterized as weak yet attractive and based on electrostatics, with a non-negligible contribution from orbital charge transfer and polarization
Functional barriers to the adoption of electronic banking: The moderating effect of gender
The adoption of electronic banking in Spain is lower compared to other countries. This study analyzes the barriers that prevent its adoption, with the conceptual framework of the theory of resistance to innovation. In addition, it analyzes the moderating effect of gender on these barriers. Using structural equations, through PLS and multi-group analysis, the results confirm consumer resistance to electronic banking adoption by functional barriers. It highlights the importance of the value barrier, being this aspect of particular relevance for men, while women are more affected by the complexity in the use of electronic banking. These results have implications for management in overcoming non-adopters’ resistance to the innovation.
La adopción de la banca electrónica en España es menor en comparación con otros países. Este estudio analiza las barreras que impiden su adopción, con el marco conceptual de la teoría de la resistencia a la innovación. Además, analiza el efecto moderador del género sobre estas barreras. Utilizando ecuaciones estructurales, a través de PLS y análisis multi-grupo, los resultados confirman la resistencia del consumidor a la adopción de la banca electrónica por barreras funcionales. Destaca la importancia de la barrera de valor, siendo este aspecto de especial relevancia para los hombres, mientras que a las mujeres les impacta más la complejidad en el uso de la banca electrónica. Estos resultados tienen implicaciones para la gestión para superar la resistencia de los no adoptantes a la innovación
Ab Initio Molecular Dynamics on the Electronic Boltzmann Equilibrium Distribution
We prove that for a combined system of classical and quantum particles, it is
possible to write a dynamics for the classical particles that incorporates in a
natural way the Boltzmann equilibrium population for the quantum subsystem. In
addition, these molecular dynamics do not need to assume that the electrons
immediately follow the nuclear motion (in contrast to any adiabatic approach),
and do not present problems in the presence of crossing points between
different potential energy surfaces (conical intersections or spin-crossings).
A practical application of this molecular dynamics to study the effect of
temperature in molecular systems presenting (nearly) degenerate states - such
as the avoided crossing in the ring-closure process of ozone - is presented.Comment: published in New J. Phy
Dynamics for a 2-vertex Quantum Gravity Model
We use the recently introduced U(N) framework for loop quantum gravity to
study the dynamics of spin network states on the simplest class of graphs: two
vertices linked with an arbitrary number N of edges. Such graphs represent two
regions, in and out, separated by a boundary surface. We study the algebraic
structure of the Hilbert space of spin networks from the U(N) perspective. In
particular, we describe the algebra of operators acting on that space and
discuss their relation to the standard holonomy operator of loop quantum
gravity. Furthermore, we show that it is possible to make the restriction to
the isotropic/homogeneous sector of the model by imposing the invariance under
a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator
and study the induced dynamics. Finally, we explore the analogies between this
model and loop quantum cosmology and sketch some possible generalizations of
it.Comment: 28 pages, v2: typos correcte
- …