107 research outputs found

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRβ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types

    Quantification and viability analyses of Pseudokirchneriella subcapitata algal cells using image-based cytometry

    Get PDF
    This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1×105 and 8×106 cells mL1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2=0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.FCT Strategic Project PEst- OE/EQB/LA0023/2013. The post-doctoral grant from FCT (SFRH/BPD/72816/2010)

    Combined loss of the BH3-only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice.

    Get PDF
    Terminal differentiation of B cells depends on two interconnected survival pathways, elicited by the B-cell receptor (BCR) and the BAFF receptor (BAFF-R), respectively. Loss of either signaling pathway arrests B-cell development. Although BCR-dependent survival depends mainly on the activation of the v-AKT murine thymoma viral oncogene homolog 1 (AKT)/PI3-kinase network, BAFF/BAFF-R-mediated survival engages non-canonical NF-κB signaling as well as MAPK/extracellular-signal regulated kinase and AKT/PI3-kinase modules to allow proper B-cell development. Plasma cell survival, however, is independent of BAFF-R and regulated by APRIL that signals NF-κB activation via alternative receptors, that is, transmembrane activator and CAML interactor (TACI) or B-cell maturation (BCMA). All these complex signaling events are believed to secure survival by increased expression of anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins in developing and mature B cells. Curiously, how lack of BAFF- or APRIL-mediated signaling triggers B-cell apoptosis remains largely unexplored. Here, we show that two pro-apoptotic members of the 'Bcl2 homology domain 3-only' subgroup of the Bcl2 family, Bcl2 interacting mediator of cell death (Bim) and Bcl2 modifying factor (Bmf), mediate apoptosis in the context of TACI-Ig overexpression that effectively neutralizes BAFF as well as APRIL. Surprisingly, although Bcl2 overexpression triggers B-cell hyperplasia exceeding the one observed in Bim(-/-)Bmf(-/-) mice, Bcl2 transgenic B cells remain susceptible to the effects of TACI-Ig expression in vivo, leading to ameliorated pathology in Vav-Bcl2 transgenic mice. Together, our findings shed new light on the molecular machinery restricting B-cell survival during development, normal homeostasis and under pathological conditions. Our data further suggest that Bcl2 antagonists might improve the potency of BAFF/APRIL-depletion strategies in B-cell-driven pathologies

    Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella subcapitata to metal stress

    Get PDF
    This work explores the use of fluorescent probes to evaluate the responses of the green alga Pseudokirchneriella subcapitata to the action of three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II) for a short time (6 h). The toxic effect of the metals on algal cells was monitored using the fluorochromes SYTOX Green (SG, membrane integrity), fluorescein diacetate (FDA, esterase activity) and rhodamine 123 (Rh123, mitochondrial membrane potential). The impact of metals on chlorophyll a (Chl a) autofluorescence was also evaluated. Esterase activity was the most sensitive parameter. At the concentrations studied, all metals induced the loss of esterase activity. SG could be used to effectively detect the loss of membrane integrity in algal cells exposed to 0.32 or 1.3 mol L1 Cu(II). Rh123 revealed a decrease in the mitochondrial membrane potential of algal cells exposed to 0.32 and 1.3 mol L1 Cu(II), indicating that mitochondrial activity was compromised. Chl a autofluorescence was also affected by the presence of Cr(VI) and Cu(II), suggesting perturbation of photosynthesis. In conclusion, the fluorescence-based approach was useful for detecting the disturbance of specific cellular characteristics. Fluorescent probes are a useful diagnostic tool for the assessment of the impact of toxicants on specific targets of P. subcapitata algal cells.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013. Manuela D. Machado gratefully acknowledges the post-doctoral grant from FCT (SFRH/BPD/72816/2010)

    A higher activation threshold of memory CD8+ T cells has a fitness cost that is modified by TCR affinity during Tuberculosis

    Get PDF
    All relevant data are within the paper and its Supporting Information files except for the primary TCR sequences. The data files for the primary TCR sequences are publicly deposited in the University of Massachusetts Medical School’s institutional repository, eScholarship@UMMS. The permanent link to the data is http://dx.doi.org/10.13028/M2CC70T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.This work was supported by NIH R01 AI106725 as well as fellowship funding to SC from NIH AI T32 007061 and the UMass GSBS Millennium Program. The Small Animal Biocontainment Suite was supported in part by Center for AIDS Research Grant P30 AI 060354. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Suppression of BCL6 Function by HDAC Inhibitor Mediated Acetylation and Chromatin Modification Enhances BET Inhibitor Effects in B-cell Lymphoma Cells

    Get PDF
    Multiple genetic aberrations in the regulation of BCL6, including in acetyltransferase genes, occur in clinically aggressive B-cell lymphomas and lead to higher expression levels and activity of this transcriptional repressor. BCL6 is, therefore, an attractive target for therapy in aggressive lymphomas. In this study romidepsin, a potent histone deacetylase inhibitor (HDACi), induced apoptosis and cell cycle arrest in Burkitt and diffuse large B-cell lymphoma cell lines, which are model cells for studying the mechanism of action of BCL6. Romidepsin caused BCL6 acetylation at early timepoints inhibiting its function, while at later timepoints BCL6 expression was reduced and target gene expression increased due to chromatin modification. MYC contributes to poor prognosis in aggressive lymphoma. MYC function is reduced by inhibition of chromatin readers of the bromodomain and extra-terminal repeat (BET) family, which includes BRD4. The novel combination of romidepsin and JQ1, a BRD4 inhibitor was investigated and showed synergy. Collectively we suggest that the combination of HDACi and BRD4i should be pursued in further pre-clinical testing.Funding: The work was supported by grants SAF2014-53526-R and SAF2017-88026-R from MINECO, Spanish Government, to M.D.D. and J.L. (partially funded by FEDER program from European Union). M.G.C. was recipient of a “Marcos Fernández” fellowship from Leukemia and Lymphoma foundation. L.G.G. was recipient of a FPI fellowship from Spanish Government

    Flow cytometry, microscopy, and DNA analysis as complementary phytoplankton screening methods in ballast water treatment studies

    No full text
    Ballast water is the main vector for marine invasions. To minimize the spread of invasive species, the International Maritime Organization (IMO) has adopted the Ballast Water Management Convention which requires the installation of shipboard ballast water treatment systems (BWTS). During BWTS tests, the phytoplankton abundance and species composition were followed after treatment with both filtration and ultraviolet radiation. Although the installation fulfilled the IMO criteria after a 5-day holding time in a model ballast tank, the ultimate effectiveness of the treatment was further tested in long-term (20 days) incubation experiments under optimal phytoplankton growth conditions. Application of flow cytometry, microscopy, and DNA sequencing to these incubation samples gave an indication of the phytoplankton species that might be introduced by ballast water discharge-despite treatment. Phytoplankton was reliably quantified using flow cytometry, while fast identification was best done using microscopy. Some groups that contained potentially toxic species could not be identified at species level using microscopy; for these species, identification using genetic techniques was necessary. It is concluded that if long-term incubation experiments are used as an additional tool in testing BWTS effectiveness, a combination of phytoplankton screening methods can be applied depending on the detail of information that is required

    MCL-1 Inhibition Is Highly Effective Against Multiple Myeloma Cells from Poor Prognosis Patients

    No full text
    Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
    corecore