157 research outputs found

    The equation of state of solid nickel aluminide

    Full text link
    The pressure-volume-temperature equation of state of the intermetallic compound NiAl was calculated theoretically, and compared with experimental measurements. Electron ground states were calculated for NiAl in the CsCl structure, using density functional theory, and were used to predict the cold compression curve and the density of phonon states. The Rose form of compression curve was found to reproduce the ab initio calculations well in compression but exhibited significant deviations in expansion. A thermodynamically-complete equation of state was constructed for NiAl. Shock waves were induced in crystals of NiAl by the impact of laser-launched Cu flyers and by launching NiAl flyers into transparent windows of known properties. The TRIDENT laser was used to accelerate the flyers to speeds between 100 and 600m/s. Point and line-imaging laser Doppler velocimetry was used to measure the acceleration of the flyer and the surface velocity history of the target. The velocity histories were used to deduce the stress state, and hence states on the principal Hugoniot and the flow stress. Flyers and targets were recovered from most experiments. The effect of elasticity and plastic flow in the sample and window was assessed. The ambient isotherm reproduced static compression data very well, and the predicted Hugoniot was consistent with shock compression data

    Unsupervised Bayesian linear unmixing of gene expression microarrays

    Get PDF
    Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor

    Anomalous relaxations and chemical trends at III-V nitride non-polar surfaces

    Full text link
    Relaxations at nonpolar surfaces of III-V compounds result from a competition between dehybridization and charge transfer. First principles calculations for the (110) and (101ˉ\bar{1}0) faces of zincblende and wurtzite AlN, GaN and InN reveal an anomalous behavior as compared with ordinary III-V semiconductors. Additional calculations for GaAs and ZnO suggest close analogies with the latter. We interpret our results in terms of the larger ionicity (charge asymmetry) and bonding strength (cohesive energy) in the nitrides with respect to other III-V compounds, both essentially due to the strong valence potential and absence of pp core states in the lighter anion. The same interpretation applies to Zn II-VI compounds.Comment: RevTeX 7 pages, 8 figures included; also available at http://kalix.dsf.unica.it/preprints/; improved after revie

    Antitumor Effect by Either FLASH or Conventional Dose Rate Irradiation Involves Equivalent Immune Responses.

    Get PDF
    The capability of ultrahigh dose rate FLASH radiation therapy to generate the FLASH effect has opened the possibility to enhance the therapeutic index of radiation therapy. The contribution of the immune response has frequently been hypothesized to account for a certain fraction of the antitumor efficacy and tumor kill of FLASH but has yet to be rigorously evaluated. To investigate the immune response as a potentially important mechanism of the antitumor effect of FLASH, various murine tumor models were grafted either subcutaneously or orthotopically into immunocompetent mice or in moderately and severely immunocompromised mice. Mice were locally irradiated with single dose (20 Gy) or hypofractionated regimens (3 × 8 or 2 × 6 Gy) using FLASH (≥2000 Gy/s) and conventional (CONV) dose rates (0.1 Gy/s), with/without anti-CTLA-4. Tumor growth was monitored over time and immune profiling performed. FLASH and CONV 20 Gy were isoeffective in delaying tumor growth in immunocompetent and moderately immunodeficient hosts and increased tumor doubling time to >14 days versus >7 days in control animals. Similar observations were obtained with a hypofractionated scheme, regardless of the microenvironment (subcutaneous flank vs ortho lungs). Interestingly, in profoundly immunocompromised mice, 20 Gy FLASH retained antitumor activity and significantly increased tumor doubling time to >14 days versus >8 days in control animals, suggesting a possible antitumor mechanism independent of the immune response. Analysis of the tumor microenvironment showed similar immune profiles after both irradiation modalities with significant decrease of lymphoid cells by ∼40% and a corresponding increase of myeloid cells. In addition, FLASH and CONV did not increase transforming growth factor-β1 levels in tumors compared with unirradiated control animals. Furthermore, when a complete and long-lasting antitumor response was obtained (>140 days), both modalities of irradiation were able to generate a long-term immunologic memory response. The present results clearly document that the tumor responses across multiple immunocompetent and immunodeficient mouse models are largely dose rate independent and simultaneously contradict a major role of the immune response in the antitumor efficacy of FLASH. Therefore, our study indicates that FLASH is as potent as CONV in modulating antitumor immune response and can be used as an immunomodulatory agent

    Guidance on the Use of Complex Systems Models for Economic Evaluations of Public Health Interventions

    Get PDF
    To help health economic modelers respond to demands for greater use of complex systems models in public health. To propose identifiable features of such models and support researchers to plan public health modeling projects using these models. A working group of experts in complex systems modeling and economic evaluation was brought together to develop and jointly write guidance for the use of complex systems models for health economic analysis. The content of workshops was informed by a scoping review. A public health complex systems model for economic evaluation is defined as a quantitative, dynamic, non-linear model that incorporates feedback and interactions among model elements, in order to capture emergent outcomes and estimate health, economic and potentially other consequences to inform public policies. The guidance covers: when complex systems modeling is needed; principles for designing a complex systems model; and how to choose an appropriate modeling technique. This paper provides a definition to identify and characterize complex systems models for economic evaluations and proposes guidance on key aspects of the process for health economics analysis. This document will support the development of complex systems models, with impact on public health systems policy and decision making

    What can comparative genomics tell us about species concepts in the genus Aspergillus?

    Get PDF
    Understanding the nature of species” boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species

    Modelling the risk of Taenia solium exposure from pork produced in western Kenya

    Get PDF
    The tapeworm Taenia solium is the parasite responsible for neurocysticercosis, a neglected tropical disease of public health importance, thought to cause approximately 1/3 of epilepsy cases across endemic regions. The consumption of undercooked infected pork perpetuates the parasite’s life-cycle through the establishment of adult tapeworm infections in the community. Reducing the risk associated with pork consumption in the developing world is therefore a public health priority. The aim of this study was to estimate the risk of any one pork meal in western Kenya containing a potentially infective T. solium cysticercus at the point of consumption, an aspect of the parasite transmission that has not been estimated before. To estimate this, we used a quantitative food chain risk assessment model built in the @RISK add-on to Microsoft Excel. This model indicates that any one pork meal consumed in western Kenya has a 0.006 (99% Uncertainty Interval (U.I). 0.0002–0.0164) probability of containing at least one viable T. solium cysticercus at the point of consumption and therefore being potentially infectious to humans. This equates to 22,282 (99% U.I. 622–64,134) potentially infective pork meals consumed in the course of one year within Busia District alone. This model indicates a high risk of T. solium infection associated with pork consumption in western Kenya and the work presented here can be built upon to investigate the efficacy of various mitigation strategies for this locality

    The design of a community lifestyle programme to improve the physical and psychological well-being of pregnant women with a BMI of 30 kg/m2 or more

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a global public health issue. Having a BMI of 30 kg/m<sup>2 </sup>or more (classifying a person as obese) at the start of pregnancy is a significant risk factor for maternal and fetal morbidity. There is a dearth of evidence to inform suitable inteventions to support pregnant women with a BMI of 30 kg/m<sup>2 </sup>or more. Here we describe a study protocol to test the feasibility of a variety of potential healthy lifestyle interventions for pregnant women with a BMI of 30 kg/m<sup>2 </sup>or more in a community based programme.</p> <p>Methods/Design</p> <p>Four hundred women will be approached to attend a 10-week community lifestyle programme. The programme will be provided as a supplement to standard antenatal care. The programme is multi-faceted, aimed at equipping participants with the skills and knowledge needed to adopt healthy behaviours. The social (cognitive) learning theory will be used as a tool to encourage behaviour change, the behaviour change techniques are underpinned by five theoretical components; self-efficacy, outcome expectancies, goal setting, feedback and positive reinforcement.</p> <p>The main outcomes are pregnancy weight gain and caesarean section rate. Other important outcomes include clinical outcomes (e.g., birth weight) and psychological outcomes (e.g., well-being). Secondary outcomes include women's experience of pregnancy and health care services, amount of physical activity, food intake and the suitability of the intervention components.</p> <p>A prospective study using quantitative and qualitative methods will inform the feasibility of implementing the community lifestyle programme with pregnant women with a BMI of 30 kg/m<sup>2 </sup>or more. Mixed methods of data collection will be used, including diaries, focus groups/interviews, pedometers, validated and specifically designed questionnaires, a programme register, weight gain during pregnancy and perinatal outcome data.</p> <p>Discussion</p> <p>Findings from this current feasibility study will inform future interventions and NHS services and add to the evidence-base by providing information about the experiences of pregnant women with a BMI of 30 kg/m<sup>2 </sup>or more undertaking a community lifestyle programme. The study will lead on to a randomised control trial of a suitable intervention to improve the pregnancy outcomes of this target group.</p> <p>Trail Registration</p> <p>ISRCTN29860479.</p
    corecore