3,563 research outputs found

    Numerical study on diverging probability density function of flat-top solitons in an extended Korteweg-de Vries equation

    Full text link
    We consider an extended Korteweg-de Vries (eKdV) equation, the usual Korteweg-de Vries equation with inclusion of an additional cubic nonlinearity. We investigate the statistical behaviour of flat-top solitary waves described by an eKdV equation in the presence of weak dissipative disorder in the linear growth/damping term. With the weak disorder in the system, the amplitude of solitary wave randomly fluctuates during evolution. We demonstrate numerically that the probability density function of a solitary wave parameter κ\kappa which characterizes the soliton amplitude exhibits loglognormal divergence near the maximum possible κ\kappa value.Comment: 8 pages, 4 figure

    The Origin of X-shaped Radio Galaxies: Clues from the Z-symmetric Secondary Lobes

    Full text link
    Existing radio images of a few X-shaped radio galaxies reveal Z-symmetric morphologies in their weaker secondary lobes which cannot be naturally explained by either the galactic merger or radio-lobe backflow scenarios, the two dominant models for these X-shaped radio sources. We show that the merger picture can explain these morphologies provided one takes into account that, prior to the coalescence of their supermassive black holes, the smaller galaxy releases significant amounts of gas into the ISM of the dominant active galaxy. This rotating gas, whose angular momentum axis will typically not be aligned with the original jets, is likely to provide sufficient ram pressure at a distance ~10 kpc from the nucleus to bend the extant jets emerging from the central engine, thus producing a Z-symmetry in the pair of radio lobes. Once the two black holes have coalesced some 10^7 yr later, a rapid reorientation of the jets along a direction close to that of the orbital angular momentum of the swallowed galaxy relative to the primary galaxy would create the younger primary lobes of the X-shaped radio galaxy. This picture naturally explains why such sources typically have powers close to the FR I/II break. We suggest that purely Z-symmetric radio sources are often en route to coalescence and the concomitant emission of substantial gravitational radiation, while X-shaped ones have already merged and radiated.Comment: 12 pages, 1 compressed figure; accepted for publication in ApJ Letter

    Diffusive counter dispersion of mass in bubbly media

    Full text link
    We consider a liquid bearing gas bubbles in a porous medium. When gas bubbles are immovably trapped in a porous matrix by surface-tension forces, the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. Essentially, the gas solution is in local thermodynamic equilibrium with vapor phase all over the system, i.e., the solute concentration equals the solubility. When temperature and/or pressure gradients are applied, diffusion fluxes appear and these fluxes are faithfully determined by the temperature and pressure fields, not by the local solute concentration, which is enslaved by the former. We derive the equations governing such systems, accounting for thermodiffusion and gravitational segregation effects which are shown not to be neglected for geological systems---marine sediments, terrestrial aquifers, etc. The results are applied for the treatment of non-high-pressure systems and real geological systems bearing methane or carbon dioxide, where we find a potential possibility of the formation of gaseous horizons deep below a porous medium surface. The reported effects are of particular importance for natural methane hydrate deposits and the problem of burial of industrial production of carbon dioxide in deep aquifers.Comment: 10 pages, 5 figures, 1 table, Physical Review

    Earth Radiation Budget Experiment (ERBE) scanner instrument anomaly investigation

    Get PDF
    The results of an ad-hoc committee investigation of in-Earth orbit operational anomalies noted on two identical Earth Radiation Budget Experiment (ERBE) Scanner instruments on two different spacecraft busses is presented. The anomalies are attributed to the bearings and the lubrication scheme for the bearings. A detailed discussion of the pertinent instrument operations, the approach of the investigation team and the current status of the instruments now in Earth orbit is included. The team considered operational changes for these instruments, rework possibilities for the one instrument which is waiting to be launched, and preferable lubrication considerations for specific space operational requirements similar to those for the ERBE scanner bearings

    On the connection between gamma and radio radiation spectra in pulsars

    Full text link
    The model of pulsar radio emission is discussed in which a coherent radio emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X and gamma radiation are considered as the result of low-frequency radio emission inverse Comp-ton scattering on ultra relativistic electrons accelerated in the gap. The influence of the pulsar magnetic field on Compton scattering is taken into account. The relation of radio and gamma radiation spectra has been found in the framework of the model.Comment: 15 pages, 3 figures, Russian version accepted to JETP, partly published in JETP Letters, Vol. 85, #6 (2007

    Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator

    Get PDF
    We show that the properties of the electron beam and bright x-rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimised when the plasma length is matched to the laser depletion length. With a 200~TW laser pulse this results in an x-ray beam with median photon energy of \unit[20]{keV}, >6×108> 6\times 10^{8} photons above \unit[1]{keV} per shot and a peak brightness of \unit[3 \times 10^{22}]{photons~s^{-1}mrad^{-2}mm^{-2} (0.1\% BW)^{-1}}.Comment: 5 pages, 4 figure

    Contextual factors among indiscriminate or larger attacks on food or water supplies, 1946-2015

    Get PDF
    This research updates previous inventories of malicious attacks on food and water to include data from 1946 through mid-2015. A systematic search of news reports, databases and previous inventories of poisoning events was undertaken. Incidents that threatened or were intended to achieve direct harm to humans, and that were either relatively large (number of victims > 4 or indiscriminate in intent or realisation were included. Agents could be chemical, biological or radio-nuclear. Reports of candidate incidents were subjected to systematic inclusion and exclusion criteria as well as validity analysis (not always clearly undertaken in previous inventories of such attacks). We summarise contextual aspects of the attacks that may be important for scenario prioritisation, modelling and defensive preparedness. Opportunity is key to most realised attacks, particularly access to dangerous agents. The most common motives and relative success rate in causing harm were very different between food and water attacks. The likelihood that people were made ill or died also varied by food/water mode, and according to motive and opportunity for delivery of the hazardous agent. Deaths and illness associated with attacks during food manufacture and prior to sale have been fewer than those in some other contexts. Valuable opportunities for food defence improvements are identified in other contexts, especially food prepared in private or community settings

    Si3AlP: A new promising material for solar cell absorber

    Full text link
    First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] We find that the ordered CC-Si3AlP with a basic unit of one P atom surrounded by three Si atoms and one Al atom is the most stable one within the experimentally observed unit cell.1 Si3AlP has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region. The calculated properties of Si3AlP suggest that it is a promising candidate for improving the performance of the existing Si-based solar cells. The understanding on the stability and band structure engineering obtained in this study is general and can be applied for future study of other nonisovalent and lattice-matched semiconductor alloys

    The origin of the Narrow Line Region of Mrk 3: an overpressured jet cocoon

    Get PDF
    We have obtained HST FOC long-slit optical spectroscopy of the Narrow Line Region of the Seyfert 2 galaxy Mrk 3. In the region cospatial with the radio-jet the velocity field is highly perturbed and shows two velocity systems separated by as much as 1700 km/s. We interpret this to be the consequence of the rapid expansion of a cocoon of hot gas, shocked and heated by the radio-emitting outflow, which compresses and accelerates the ambient gas. The NLR itself is essentially a cylindrical shell expanding supersonically. From the size and velocity of the expanding region, we derive an upper limit to the radio-source age, ~ 2 E42 erg/s required to inflate the cocoon and estimate that the jet minimum advance speed is 3 E-3 pc per year. The total kinetic energy of the high velocity NLR gas can be estimated as ~6 E54 erg, comparable to the total energy carried by the jet over its lifetime and this quantitatively supports the idea that the NLR gas is accelerated by the jet. If the advance speed of Mrk 3 is representative of the Seyfert population then these sources must also be short lived and probably recurrent. The jet kinetic luminosity of Mrk 3 is between 2 and 3 orders of magnitude smaller than that derived for radio-loud AGNs with similar emission-line luminosity. On the other hand, the fraction of jet power dissipated in radio-emission is similar. We speculate that the main distinction between radio-quiet and radio-loud AGN is ascribed to a difference in jet power rather than to a different efficiency in synchrotron emission production.Comment: 13 pages, 8 figures, Astrophysical Journal in pres

    Magnetoplasmonic design rules for active magneto-optics

    Full text link
    Light polarization rotators and non-reciprocal optical isolators are essential building blocks in photonics technology. These macroscopic passive devices are commonly based on magneto-optical Faraday and Kerr polarization rotation. Magnetoplasmonics - the combination of magnetism and plasmonics - is a promising route to bring these devices to the nanoscale. We introduce design rules for highly tunable active magnetoplasmonic elements in which we can tailor the amplitude and sign of the Kerr response over a broad spectral range
    corecore