613 research outputs found

    Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study

    Get PDF
    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM

    Novel modes of rhythmic burst firing at cognitively-relevant frequencies in thalamocortical neurons.

    Get PDF
    It is now widely accepted that certain types of cognitive functions are intimately related to synchronized neuronal oscillations at both low (alpha/theta) (4-7/8-13 Hz) and high (beta/gamma) (18-35/30-70 Hz) frequencies. The thalamus is a key participant in many of these oscillations, yet the cellular mechanisms by which this participation occurs are poorly understood. Here we describe how, under appropriate conditions, thalamocortical (TC) neurons from different nuclei can exhibit a wide array of largely unrecognised intrinsic oscillatory activities at a range of cognitively-relevant frequencies. For example, both metabotropic glutamate receptor (mGluR) and muscarinic Ach receptor (mAchR) activation can cause rhythmic bursting at alpha/theta frequencies. Interestingly, key differences exist between mGluR- and mAchR-induced bursting, with the former involving extensive dendritic Ca2+ electrogenesis and being mimicked by a non-specific block of K+ channels with Ba2+, whereas the latter appears to be more reliant on proximal Na+ channels and a prominent spike afterdepolarization (ADP). This likely relates to the differential somatodendritic distribution of mGluRs and mAChRs and may have important functional consequences. We also show here that in similarity to some neocortical neurons, inhibiting large-conductance Ca2+-activated K+ channels in TC neurons can lead to fast rhythmic bursting (FRB) at approximately 40 Hz. This activity also appears to rely on a Na+ channel-dependent spike ADP and may occur in vivo during natural wakefulness. Taken together, these results show that TC neurons are considerably more flexible than generally thought and strongly endorse a role for the thalamus in promoting a range of cognitively-relevant brain rhythms

    Different electrophysiological actions of 24- and 72-hour aggregated amyloid-beta oligomers on hippocampal field population spike in both anesthetized and awake rats.

    Get PDF
    Diffusible oligomeric assemblies of the amyloid beta-protein (Abeta) could be the primary factor in the pathogenic pathway leading to Alzheimer's disease (AD). Converging lines of evidence support the notion that AD begins with subtle alterations in synaptic efficacy, prior to the occurrence of extensive neuronal degeneration. Recently, however, a shared or overlapping pathogenesis for AD and epileptic seizures occurred as aberrant neuronal hyperexcitability, as well as nonconvulsive seizure activity were found in several different APP transgenic mouse lines. This generated a renewed attention to the well-known comorbidity of AD and epilepsy and interest in how Abeta oligomers influence neuronal excitability. In this study therefore, we investigated the effect of various in vitro-aged Abeta(1-42) oligomer solutions on the perforant pathway-evoked field potentials in the ventral hippocampal dentate gyrus in vivo. Firstly, Abeta oligomer solutions (1 microl, 200 microM) which had been aggregated in vitro for 0, 24 or 72h were injected into the hippocampus of urethane-anesthetized rats, in parallel with in vitro physico-chemical characterization of Abeta oligomerization (atomic force microscopy, thioflavin-T fluorescence). We found a marked increase of hippocampal population spike (pSpike) after injection of the 24-h Abeta oligomer solution and a decrease of the pSpike amplitude after injection of the 72-h Abeta oligomer. Since urethane anesthesia affects the properties of hippocampal evoked potentials, we repeated the injection of these two Abeta oligomer solutions in awake, freely moving animals. Evoked responses to perforant pathway stimulation revealed a 70% increase of pSpike amplitude 50 min after the 24-h Abeta oligomer injection and a 55% decrease after the 72-h Abeta oligomer injection. Field potentials, that reflect synaptic potentials, were not affected by the Abeta injection. These results demonstrate that oligomeric Abeta aggregates elicit opposite electrophysiological effects on neuronal excitability which depend on their degree of oligomerization

    Essential thalamic contribution to slow waves of natural sleep

    Get PDF
    Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels. Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75-1.5 Hz) only when thalamic T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm

    Principle of Maximum Entropy Applied to Rayleigh-B\'enard Convection

    Full text link
    A statistical-mechanical investigation is performed on Rayleigh-B\'enard convection of a dilute classical gas starting from the Boltzmann equation. We first present a microscopic derivation of basic hydrodynamic equations and an expression of entropy appropriate for the convection. This includes an alternative justification for the Oberbeck-Boussinesq approximation. We then calculate entropy change through the convective transition choosing mechanical quantities as independent variables. Above the critical Rayleigh number, the system is found to evolve from the heat-conducting uniform state towards the convective roll state with monotonic increase of entropy on the average. Thus, the principle of maximum entropy proposed for nonequilibrium steady states in a preceding paper is indeed obeyed in this prototype example. The principle also provides a natural explanation for the enhancement of the Nusselt number in convection.Comment: 13 pages, 4 figures; typos corrected; Eq. (66a) corrected to remove a double counting for k=0k_{\perp}=0; Figs. 1-4 replace

    Selective Ablation of the Androgen Receptor in Mouse Sertoli Cells Affects Sertoli Cell Maturation, Barrier Formation and Cytoskeletal Development

    Get PDF
    The observation that mice with a selective ablation of the androgen receptor (AR) in Sertoli cells (SC) (SCARKO mice) display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli) and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin). Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2). It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development

    Density functional theory for nearest-neighbor exclusion lattice gasses in two and three dimensions

    Full text link
    To speak about fundamental measure theory obliges to mention dimensional crossover. This feature, inherent to the systems themselves, was incorporated in the theory almost from the beginning. Although at first it was thought to be a consistency check for the theory, it rapidly became its fundamental pillar, thus becoming the only density functional theory which possesses such a property. It is straightforward that dimensional crossover connects, for instance, the parallel hard cube system (three-dimensional) with that of squares (two-dimensional) and rods (one-dimensional). We show here that there are many more connections which can be established in this way. Through them we deduce from the functional for parallel hard (hyper)cubes in the simple (hyper)cubic lattice the corresponding functionals for the nearest-neighbor exclusion lattice gases in the square, triangular, simple cubic, face-centered cubic, and body-centered cubic lattices. As an application, the bulk phase diagram for all these systems is obtained.Comment: 13 pages, 13 figures; needs revtex

    A quantitative explanation of the observed population of Milky Way satellite galaxies

    Get PDF
    We revisit the well known discrepancy between the observed number of Milky Way (MW) dwarf satellite companions and the predicted population of cold dark matter (CDM) sub-halos, in light of the dozen new low luminosity satellites found in SDSS imaging data and our recent calibration of the SDSS satellite detection efficiency, which implies a total population far larger than these dozen discoveries. We combine a dynamical model for the CDM sub-halo population with simple, physically motivated prescriptions for assigning stellar content to each sub-halo, then apply observational selection effects and compare to the current observational census. As expected, models in which the stellar mass is a constant fraction F(Omega_b/Omega_m) of the sub-halo mass M_sat at the time it becomes a satellite fail for any choice of F. However, previously advocated models that invoke suppression of gas accretion after reionization in halos with circular velocity v_c <~ 35 km/s can reproduce the observed satellite counts for -15 < M_V < 0, with F ~ 10^{-3}. Successful models also require strong suppression of star formation BEFORE reionization in halos with v_c <~ 10 km/s; models without pre-reionization suppression predict far too many satellites with -5 < M_V < 0. Our models also reproduce the observed stellar velocity dispersions ~ 5-10 km/s of the SDSS dwarfs given the observed sizes of their stellar distributions, and model satellites have M(<300 pc) ~ 10^7 M_sun as observed even though their present day total halo masses span more than two orders of magnitude. Our modeling shows that natural physical mechanisms acting within the CDM framework can quantitatively explain the properties of the MW satellite population as it is presently known, thus providing a convincing solution to the `missing satellite' problem.Comment: 18 pages, 14 figures, accepted to ApJ. Minor changes following referees repor
    corecore