7,983 research outputs found
Numerical simulation of time delay interferometry for eLISA/NGO
eLISA/NGO is a new gravitational wave detection proposal with arm length of
10^6 km and one interferometer down-scaled from LISA. Just like LISA and
ASTROD-GW, in order to attain the requisite sensitivity for eLISA/NGO, laser
frequency noise must be suppressed to below the secondary noises such as the
optical path noise, acceleration noise etc. In previous papers, we have
performed the numerical simulation of the time delay interferometry (TDI) for
LISA and ASTROD-GW with one arm dysfunctional by using the CGC 2.7 ephemeris.
The results are well below their respective limits which the laser frequency
noise is required to be suppressed. In this paper, we follow the same procedure
to simulate the time delay interferometry numerically. To do this, we work out
a set of 1000-day optimized mission orbits of the eLISA/NGO spacecraft starting
at January 1st, 2021 using the CGC 2.7 ephemeris framework. We then use the
numerical method to calculate the residual optical path differences in the
second-generation TDI solutions as in our previous papers. The maximum path
length difference, for all configurations calculated, is below 13 mm (43 ps).
It is well below the limit which the laser frequency noise is required to be
suppressed for eLISA/NGO. We compare and discuss the resulting differences due
to the different arm lengths for various mission proposals -- eLISA/NGO, an
NGO-LISA-type mission with a nominal arm length of 2 x 10^6 km, LISA and
ASTROD-GW.Comment: 17 pages, 13 figures, 3 tables, minor changes in description to match
the accepted version of Classical and Quantum Gravity. arXiv admin note: text
overlap with arXiv:1102.496
Electron-phonon relaxation and excited electron distribution in zinc oxide and anatase
We propose a first-principle method for evaluations of the time-dependent
electron distribution function of excited electrons in the conduction band of
semiconductors. The method takes into account the excitations of electrons by
external source and the relaxation to the bottom of conduction band via
electron-phonon coupling. The methods permits calculations of the
non-equilibrium electron distribution function, the quasi-stationary
distribution function with steady-in-time source of light, the time of setting
of the quasi-stationary distribution and the time of energy loss via relaxation
to the bottom of conduction band. The actual calculations have been performed
for titanium dioxide in the anatase structure and zinc oxide in the wurtzite
structure. We find that the quasi-stationary electron distribution function for
ZnO is a fermi-like curve that rises linearly with increasing excitation energy
whereas the analogous curve for anatase consists of a main peak and a shoulder.
The calculations demonstrate that the relaxation of excited electrons and the
setting of the quasi-stationary distribution occur within the time no more than
500 fsec for ZnO and 100 fsec for anatase.
We also discuss the applicability of the effective phonon model with
energy-independent electron-phonon transition probability. We find that the
model only reproduces the trends in changing of the characteristic times
whereas the precision of such calculations is not high. The rate of energy
transfer to phonons at the quasi-stationary electron distribution also have
been evaluated and the effect of this transfer on the photocatalyses has been
discussed. We found that for ZnO this rate is about 5 times less than in
anatase.Comment: 21 p., 9 figure
Lorentz and CPT tests with spin-polarized solids
Experiments using macroscopic samples of spin-polarized matter offer
exceptional sensitivity to Lorentz and CPT violation in the electron sector.
Data from existing experiments with a spin-polarized torsion pendulum provide
sensitivity in this sector rivaling that of all other existing experiments and
could reveal spontaneous violation of Lorentz symmetry at the Planck scale.Comment: 4 pages, accepted for publication in Physical Review Letter
Significance of c/sqrt(2) in Relativistic Physics
In the description of \emph{relative} motion in accelerated systems and
gravitational fields, inertial and tidal accelerations must be taken into
account, respectively. These involve a critical speed that in the first
approximation can be simply illustrated in the case of motion in one dimension.
For one-dimensional motion, such first-order accelerations are multiplied by
, where is the critical speed. If the speed of
relative motion exceeds , there is a sign reversal with consequences that
are contrary to Newtonian expectations.Comment: 7 pages, 1 figure, slightly expanded version accepted for publication
in Class. Quantum Gra
Low dislocation densities and long carrier lifetimes in GaN thin films grown on a SiNx nanonetwork
Significant improvement of structural and optical qualities of GaNthin films on sapphire substrates was achieved by metal organic chemical vapor deposition with in situ SiNxnanonetwork. Transmission electron microscope (TEM) studies revealed that screw- and edge-type dislocations were reduced to 4.4×107 and 1.7×107cm−2, respectively, for a ∼5.5-μm-thick layer. Furthermore, room temperature carrier lifetimes of 2.22 and 2.49ns were measured by time-resolved photoluminescence(TRPL) for samples containing single and double SiNx network layers, respectively, representing a significant improvement over the previous studies. The consistent trends among the TEM,x-ray diffraction, and TRPL measurements suggest that in situ SiNx network reduces line defects effectively as well as the point-defect-related nonradiative centers
Formation of ultracold RbCs molecules by photoassociation
The formation of ultracold metastable RbCs molecules is observed in a double
species magneto-optical trap through photoassociation below the
^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous
emission. The molecules are detected by resonance enhanced two-photon
ionization. Using accurate quantum chemistry calculations of the potential
energy curves and transition dipole moment, we interpret the observed
photoassociation process as occurring at short internuclear distance, in
contrast with most previous cold atom photoassociation studies. The vibrational
levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^-
electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation
limit. The computed vibrational distribution of the produced molecules shows
that they are stabilized in deeply bound vibrational states of the lowest
triplet state. We also predict that a noticeable fraction of molecules is
produced in the lowest level of the electronic ground state
External Fields as a Probe for Fundamental Physics
Quantum vacuum experiments are becoming a flexible tool for investigating
fundamental physics. They are particularly powerful for searching for new light
but weakly interacting degrees of freedom and are thus complementary to
accelerator-driven experiments. I review recent developments in this field,
focusing on optical experiments in strong electromagnetic fields. In order to
characterize potential optical signatures, I discuss various low-energy
effective actions which parameterize the interaction of particle-physics
candidates with optical photons and external electromagnetic fields.
Experiments with an electromagnetized quantum vacuum and optical probes do not
only have the potential to collect evidence for new physics, but
special-purpose setups can also distinguish between different particle-physics
scenarios and extract information about underlying microscopic properties.Comment: 12 pages, plenary talk at QFEXT07, Leipzig, September 200
Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves
International audienceWave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks: one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and Polar Orbiting Environmental Satellites (POES) at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30–100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This provides plausible experimental evidence of stronger pitch angle scattering loss caused by oblique waves than by quasi-parallel waves with the same magnetic wave amplitudes, as predicted by numerical calculations
Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves
International audienceWe present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth's radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed, general approach is used to describe the acceleration of relativistic electrons by oblique whistler waves in the radiation belts. We demonstrate that for a wave power distribution with a hard enough power law tail inline image such that η < 5/2, the efficiency of nonlinear acceleration could be more effective than the conventional quasi-linear acceleration for 100 keV electrons
Enhancement of mechanical Q-factors by optical trapping
The quality factor of a mechanical resonator is an important figure of merit
for various sensing applications and for observing quantum behavior. Here, we
demonstrate a technique to push the quality factor of a micro-mechanical
resonator beyond conventional material and fabrication limits by using an
optical field to stiffen or "trap" a particular motional mode. Optical forces
increase the oscillation frequency by storing most of the mechanical energy in
a lossless optical potential, thereby strongly diluting the effect of material
dissipation. By using a 130 nm thick SiO disk as a suspended pendulum, we
achieve an increase in the pendulum center-of-mass frequency from 6.2 kHz to
145 kHz. The corresponding quality factor increases 50-fold from its intrinsic
value to a final value of , representing more than an
order of magnitude improvement over the conventional limits of SiO for this
geometry. Our technique may enable new opportunities for mechanical sensing and
facilitate observations of quantum behavior in this class of mechanical
systems.Comment: 14 pages, 4 figure
- …