61 research outputs found

    Linkage analysis of three families with arrythmogenic right ventricular cardiomyopathy in India

    Get PDF
    Background: Arrythmogenic Right Ventricular Cardiomyopathy (ARVC) is a primary myocardial disorder morphologically characterized by subtle to severe replacement of the right ventricular myocardium by fatty and fibrous tissue. ARVC is known to be highly prevalent in European population with recent reports implicating it to be a major cause of sudden death in young individuals even from American and Asian population. Aim: To implicate or exclude TMEM43 (ARVC-5), DSP(ARVC-8) genes and the yet to be identified gene at ARVC-6 locus in the pathogenesis in three families affected with ARVC from India. Materials and Methods: Three families comprising of 42 affected/unaffected members were included in the study. Three microsatellite markers, D3S3613 (ARVC5) D10S1664 (ARVC6), D6S309 (ARVC8) were genotyped by PCR-based native PAGE. Two-point Linkage analysis was performed using LINKAGE program version 5.2 . Results and Discussion: LOD scores from linkage analysis for the microsatellite marker D10S1664 (ARVC-6) in families KS and REV have shown positive value hinting the involvement of this locus in the etiology of ARVC, while linkage analysis in the SB family ruled out involvement of DSP, TMEM43 and ARVC-6, as negative LOD scores were obtained with all three loci. Therefore, linkage analysis carried out in the present study indicates that ARVC-6 (cumulative LOD score is equal to plus 1.203376 at q is equal to 0.05) could be the locus harboring the mutated gene in two out of three families

    Uremic Toxins and their Relation to Dialysis Efficacy

    Get PDF
    Toxin retention is felt to be a major contributor to the development of uremia in patients with advanced chronic kidney disease and end-stage renal disease (ESRD). Uremic retention compounds are classically divided into 3 categories: small solutes, middle molecules, and protein-bound toxins. Compounds comprising the first category, for which the upper molecular weight limit is generally considered to be 500 Da, possess a high degree of water solubility and minimal or absent protein binding. The second category of middle molecules has largely evolved now to be synonymous with peptides and proteins that accumulate in uremia. Although not precisely defined, low-molecular weight proteins as a class have a molecular weight spectrum ranging from approximately 500 to 60,000 daltons. The final category of uremic retention compounds is protein-bound uremic toxins (PBUTs). As opposed to the above small, highly water-soluble toxins, which are largely by-products of protein metabolism, PBUTs have diverse origins and possess chemical characteristics that preclude the possibility of circulation in an unbound form despite being of low molecular weight. This review is the first in a series of papers designed to provide the current state of the art for extracorporeal treatment of ESRD. Subsequent papers in this series will address membranes, mass transfer mechanisms, and future directions. For small solutes and middle molecules, particular emphasis is placed on the important clinical trials that comprise the evidence base regarding the influence of dialytic solute removal on outcome. Because such trials do not exist for PBUTs, the discussion here is instead focused on solute characteristics and renal elimination mechanisms

    Epidemiology and genetics of dilated cardiomyopathy in the Indian context

    No full text
    Background: Dilated cardiomyopathy (DCM) still remains to be a poorly understood and less analyzed group of cardiac-muscle disorders when compared to hypertrophic cardiomyopathy (HCM). Also, the vast clinical heterogeneity among the patients has rendered the small and isolated kindred studies less informative on the genetics and epidemiology of DCM. Aim of the study: The study aimed at understanding the epidemiology and genetics of DCMs in the Indian context. Materials and methods/ Statistical analysis: One hundred seven DCM patients and 105 healthy individuals were included in the study for epidemiological and genetic risk factor identification and to fit the possible mode of inheritance. Single′s ascertainment methodology for segregation analysis and Penrose frequency estimates were followed to evaluate for the role of specific epidemiological factors in the disease etiology. Chi-square analysis was carried out to interpret the results statistically. Results and Conclusion: Our study suggests that epidemiological factors like gender, age at onset and vegetarian diet in conjunction with sarcomere gene mutations may play a role in the disease expression. Similarly, segregation analysis for the possible mode of inheritance showed a deviation from the autosomal dominant mode of inheritance, strengthening the underlying genetic heterogeneity of DCM

    Developing an objective function to characterize the tradeoffs in salting out and the foam and droplet fractionation processes

    No full text
    There are many methods for separating and purifying proteins from dilute solutions, such as salting out/precipitation, adsorption/chromatography, foam fractionation, and droplet fractionation. In order to determine the optimal condition for a selected separation and purification process, an objective function is developed. The objective function consists of three parameters, which are the protein mass recovery, the separation ratio, and the enzymatic activity ratio. In this paper the objective function is determined as a function of the pH of the bulk solution for egg albumin, cellulase, and sporamin (for foam fractionation) and invertase ( for droplet fractionation). It is found that the optimal pH for all the systems except for cellulase is near their isoelectric point
    corecore