29 research outputs found

    Mutations in SLC29A3, Encoding an Equilibrative Nucleoside Transporter ENT3, Cause a Familial Histiocytosis Syndrome (Faisalabad Histiocytosis) and Familial Rosai-Dorfman Disease

    Get PDF
    The histiocytoses are a heterogeneous group of disorders characterised by an excessive number of histiocytes. In most cases the pathophysiology is unclear and treatment is nonspecific. Faisalabad histiocytosis (FHC) (MIM 602782) has been classed as an autosomal recessively inherited form of histiocytosis with similarities to Rosai-Dorfman disease (RDD) (also known as sinus histiocytosis with massive lymphadenopathy (SHML)). To elucidate the molecular basis of FHC, we performed autozygosity mapping studies in a large consanguineous family and identified a novel locus at chromosome 10q22.1. Mutation analysis of candidate genes within the target interval identified biallelic germline mutations in SLC29A3 in the FHC kindred and in two families reported to have familial RDD. Analysis of SLC29A3 expression during mouse embryogenesis revealed widespread expression by e14.5 with prominent expression in the central nervous system, eye, inner ear, and epithelial tissues including the gastrointestinal tract. SLC29A3 encodes an intracellular equilibrative nucleoside transporter (hENT3) with affinity for adenosine. Recently germline mutations in SLC29A3 were also described in two rare autosomal recessive disorders with overlapping phenotypes: (a) H syndrome (MIM 612391) that is characterised by cutaneous hyperpigmentation and hypertrichosis, hepatomegaly, heart anomalies, hearing loss, and hypogonadism; and (b) PHID (pigmented hypertrichosis with insulin-dependent diabetes mellitus) syndrome. Our findings suggest that a variety of clinical diagnoses (H and PHID syndromes, FHC, and familial RDD) can be included in a new diagnostic category of SLC29A3 spectrum disorder

    A MANBA mutation resulting in residual beta-mannosidase activity associated with severe leukoencephalopathy: a possible pseudodeficiency variant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-Mannosidosis (OMIM 248510) is a rare inborn lysosomal storage disorder caused by the deficient activity of β-mannosidase, an enzyme encoded by a single gene (<it>MANBA</it>) located on chromosome 4q22-25. To date, only 20 cases of this autosomal recessive disorder have been described and 14 different <it>MANBA </it>mutations were incriminated in the disease. These are all null mutations or missense mutations that abolish β-mannosidase activity. In this study, we characterized the molecular defect of a new case of β-mannosidosis, presenting with a severe neurological disorder.</p> <p>Methods</p> <p>Genomic DNA was isolated from peripheral blood leukocytes of the patient to allow <it>MANBA </it>sequencing. The identified mutation was engineered by site-directed mutagenesis and the mutant protein was expressed through transient transfection in HEK293T cells. The β-mannosidase expression and activity were respectively assessed by Western blot and fluorometric assay in both leukocytes and HEK293T cells.</p> <p>Results</p> <p>A missense disease-associated mutation, c.1922G>A (p.Arg641His), was identified for which the patient was homozygous. In contrast to previously described missense mutations, this substitution does not totally abrogate the enzyme activity but led to a residual activity of about 7% in the patient's leukocytes, 11% in lymphoblasts and 14% in plasma. Expression studies in transfected cells also resulted in 7% residual activity.</p> <p>Conclusion</p> <p>Correlations between MANBA mutations, residual activity of β-mannosidase and the severity of the ensuing neurological disorder are discussed. Whether the c.1922G>A mutation is responsible for a yet undescribed pseudodeficiency of β-mannosidase is also discussed.</p

    MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells

    Get PDF
    As a survival factor for melanocytes lineage cells, MiTF plays multiple roles in development and melanomagenesis. What role MiTF plays in the DNA damage response is currently unknown. In this report we observed that MiTF was phosphorylated at serine 73 after UVC radiation, which was followed by proteasome-mediated degradation. Unlike after c-Kit stimulation, inhibiting p90RSK-1 did not abolish the band shift of MiTF protein, nor did it abolish the UVC-mediated MiTF degradation, suggesting that phosphorylation on serine 73 by Erk1/2 is a key event after UVC. Furthermore, the MiTF-S73A mutant (Serine 73 changed to Alanine via site-directed mutagenesis) was unable to degrade and was continuously expressed after UVC exposure. Compared to A375 melanoma cells expressing wild-type MiTF (MiTF-WT), cells expressing MiTF-S73A mutant showed less p21WAF1/CIP1 accumulation and a delayed p21WAF1/CIP1 recovery after UVC. Consequently, cells expressing MiTF-WT showed a temporary G1 arrest after UVC, but cells expressing MiTF-S73A mutant or lack of MiTF expression did not. Finally, cell lines with high levels of MiTF expression showed higher resistance to UVC-induced cell death than those with low-level MiTF. These data suggest that MiTF mediates a survival signal linking Erk1/2 activation and p21WAF1/CIP1 regulation via phosphorylation on serine 73, which facilitates cell cycle arrest. In addition, our data also showed that exposure to different wavelengths of UV light elicited different signal pathways involving MiTF

    A Mild Form of SLC29A3 Disorder: A Frameshift Deletion Leads to the Paradoxical Translation of an Otherwise Noncoding mRNA Splice Variant

    Get PDF
    We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3). Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD) in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the ‘rescue’ role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic

    Expression and functional activity of nucleoside transporters in human choroid plexus

    Get PDF
    Abstract Background Human equilibrative nucleoside transporters (hENTs) 1-3 and human concentrative nucleoside transporters (hCNTs) 1-3 in the human choroid plexus (hCP) play a role in the homeostasis of adenosine and other naturally occurring nucleosides in the brain; in addition, hENT1, hENT2 and hCNT3 mediate membrane transport of nucleoside reverse transcriptase inhibitors that could be used to treat HIV infection, 3'-azido-3'-deoxythymidine, 2'3'-dideoxycytidine and 2'3'-dideoxyinosine. This study aimed to explore the expression levels and functional activities of hENTs 1-3 and hCNTs 1-3 in human choroid plexus. Methods Freshly-isolated pieces of lateral ventricle hCP, removed for various clinical reasons during neurosurgery, were obtained under Local Ethics Committee approval. Quantification of mRNAs that encoded hENTs and hCNTs was performed by the hydrolysis probes-based reverse transcription real time-polymerase chain reaction (RT-qPCR); for each gene of interest and for 18 S ribosomal RNA, which was an endogenous control, the efficiency of PCR reaction (E) and the quantification cycle (Cq) were calculated. The uptake of [3H]inosine by the choroid plexus pieces was investigated to explore the functional activity of hENTs and hCNTs in the hCP. Results RT-qPCR revealed that the mRNA encoding the intracellularly located transporter hENT3 was the most abundant, with E-Cq value being only about 40 fold less that the E-Cq value for 18 S ribosomal RNA; mRNAs encoding hENT1, hENT2 and hCNT3 were much less abundant than mRNA for the hENT3, while mRNAs encoding hCNT1 and hCNT2 were of very low abundance and not detectable. Uptake of [3H]inosine by the CP samples was linear and consisted of an Na+-dependent component, which was probably mediated by hCNT3, and Na+-independent component, mediated by hENTs. The latter component was not sensitive to inhibition by S-(4-nitrobenzyl)-6-thioinosine (NBMPR), when used at a concentration of 0.5 μM, a finding that excluded the involvement of hENT1, but it was very substantially inhibited by 10 μM NBMPR, a finding that suggested the involvement of hENT2 in uptake. Conclusion Transcripts for hENT1-3 and hCNT3 were detected in human CP; mRNA for hENT3, an intracellularly located nucleoside transporter, was the most abundant. Human CP took up radiolabelled inosine by both concentrative and equilibrative processes. Concentrative uptake was probably mediated by hCNT3; the equilibrative uptake was mediated only by hENT2. The hENT1 transport activity was absent, which could suggest either that this protein was absent in the CP cells or that it was confined to the basolateral side of the CP epithelium.</p
    corecore