5,157 research outputs found
Genetic patterns of Vitellaria paradoxa: SNP vsChemical traits in relationship with environment caracteristics
Spin-Peierls transition with strong structural fluctuations in the vanadium oxide VOSbO
We report on the magnetic susceptibility and electron spin resonance
measurements on polycrystalline samples of the vanadium oxide
VOSbO, a quasi-one dimensional S=1/2 Heisenberg system. We show
that the susceptibility vanishes at zero temperature, as in a gapped system,
and we argue that this is due to a spin-Peierls transition with strong
structural fluctuations.Comment: 5 pages, 4 figure
Hypoxia-Induced Oxidative Stress Modulation with Physical Activity.
Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed
Recommended from our members
The Role of the Ocean in the Global Atmospheric Budget of Acetone
[1] Acetone is one of the most abundant carbonyl compounds in the atmosphere and it plays an important role in atmospheric chemistry. The role of the ocean in the global atmospheric acetone budget is highly uncertain, with past studies reaching opposite conclusions as to whether the ocean is a source or sink. Here we use a global 3-D chemical transport model (GEOS-Chem) simulation of atmospheric acetone to evaluate the role of air-sea exchange in the global budget. Inclusion of updated (slower) photolysis loss in the model means that a large net ocean source is not needed to explain observed acetone in marine air. We find that a simulation with a fixed seawater acetone concentration of 15 nM based on observations can reproduce the observed global patterns of atmospheric concentrations and air-sea fluxes. The Northern Hemisphere oceans are a net sink for acetone while the tropical oceans are a net source. On a global scale the ocean is in near-equilibrium with the atmosphere. Prescribing an ocean concentration of acetone as a boundary condition in the model assumes that ocean concentrations are controlled by internal production and loss, rather than by air-sea exchange. An implication is that the ocean plays a major role in controlling atmospheric acetone. This hypothesis needs to be tested by better quantification of oceanic acetone sources and sinks.Engineering and Applied Science
Loop algorithm for Heisenberg models with biquadratic interaction and phase transitions in two dimensions
We present a new algorithm for quantum Monte Carlo simulation based on global
updating with loops. While various theoretical predictions are confirmed in one
dimension, we find, for S=1 systems on a square lattice with an
antiferromagnetic biquadratic interaction, that the intermediate phase between
the antiferromagnetic and the ferromagnetic phases is disordered and that the
two phase transitions are both of the first order in contrast to the
one-dimensional case. It is strongly suggested that the transition points
coincide those at which the algorithm changes qualitatively.Comment: 4 pages including 4 figures, to appear in JPS
Logarithmic asymptotics of the densities of SPDEs driven by spatially correlated noise
We consider the family of stochastic partial differential equations indexed
by a parameter \eps\in(0,1], \begin{equation*} Lu^{\eps}(t,x) =
\eps\sigma(u^\eps(t,x))\dot{F}(t,x)+b(u^\eps(t,x)), \end{equation*}
(t,x)\in(0,T]\times\Rd with suitable initial conditions. In this equation,
is a second-order partial differential operator with constant coefficients,
and are smooth functions and is a Gaussian noise, white
in time and with a stationary correlation in space. Let p^\eps_{t,x} denote
the density of the law of u^\eps(t,x) at a fixed point
(t,x)\in(0,T]\times\Rd. We study the existence of \lim_{\eps\downarrow 0}
\eps^2\log p^\eps_{t,x}(y) for a fixed . The results apply to a class
of stochastic wave equations with and to a class of stochastic
heat equations with .Comment: 39 pages. Will be published in the book " Stochastic Analysis and
Applications 2014. A volume in honour of Terry Lyons". Springer Verla
Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations
We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a<sup>&minus;1</sup>, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a<sup>&minus;1</sup>, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NO<sub>x</sub> ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a<sup>&minus;1</sup>. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a<sup>&minus;1</sup>) and anthropogenic emissions (2 Tg a<sup>&minus;1</sup>). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NO<sub>x</sub>: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a<sup>&minus;1</sup> and 7.8 Tg a<sup>&minus;1</sup>, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel
Sex and Exercise Intensity Do Not Influence Oxygen Uptake Kinetics in Submaximal Swimming.
The aim of this study was to compare the oxygen uptake ([Formula: see text]) kinetics in front crawl between male and female swimmers at moderate and heavy intensity. We hypothesized that the time constant for the primary phase [Formula: see text] kinetics was faster in men than in women, for both intensities. Nineteen well trained swimmers (8 females mean ± SD; age 17.9 ± 3.5 years; mass 55.2 ± 3.6 kg; height 1.66 ± 0.05 m and 11 male 21.9 ± 2.8 years; 78.2 ± 11.1 kg; 1.81 ± 0.08 m) performed a discontinuous maximal incremental test and two 600-m square wave transitions for both moderate and heavy intensities to determine the [Formula: see text] kinetics parameters using mono- and bi-exponential models, respectively. All the tests involved breath-by-breath analysis of front crawl swimming using a swimming snorkel. The maximal oxygen uptake [Formula: see text] was higher in men than in women [4,492 ± 585 ml·min(-1) and 57.7 ± 4.4 ml·kg(-1)·min(-1) vs. 2,752.4 ± 187.9 ml·min(-1) (p ≤ 0.001) and 50.0 ± 5.7 ml·kg(-1)·min(-1)(p = 0.007), respectively]. Similarly, the absolute amplitude of the primary component was higher in men for both intensities (moderate: 1,736 ± 164 vs. 1,121 ± 149 ml·min(-1); heavy: 2,948 ± 227 vs. 1,927 ± 243 ml·min(-1), p ≤ 0.001, for males and females, respectively). However, the time constant of the primary component (τp) was not influenced by sex (p = 0.527) or swimming intensity (p = 0.804) (moderate: 15.1 ± 5.6 vs. 14.4 ± 5.1 s; heavy: 13.5 ± 3.3 vs. 16.0 ± 4.5 s, for females and males, respectively). The slow component in the heavy domain was not significantly different between female and male swimmers (3.2 ± 2.4 vs. 3.8 ± 1.0 ml·kg(-1)·min(-1), p = 0.476). Overall, only the absolute amplitude of the primary component was higher in men, while the other [Formula: see text] kinetics parameters were similar between female and male swimmers at both moderate and heavy intensities. The mechanisms underlying these similarities remain unclear
Recommended from our members
Spatial Distribution of Isoprene Emissions from North America Derived from Dormaldehyde Column Measurements by the OMI Satellite Sensor
Space-borne formaldehyde (HCHO) column measurements from the Ozone Monitoring Instrument (OMI), with 13 × 24 km2 nadir footprint and daily global coverage, provide new constraints on the spatial distribution of biogenic isoprene emission from North America. OMI HCHO columns for June-August 2006 are consistent with measurements from the earlier GOME satellite sensor (1996–2001) but OMI is 2–14% lower. The spatial distribution of OMI HCHO columns follows that of isoprene emission; anthropogenic hydrocarbon emissions are undetectable except in Houston. We develop updated relationships between HCHO columns and isoprene emission from a chemical transport model (GEOS-Chem), and use these to infer top-down constraints on isoprene emissions from the OMI data. We compare the OMI-derived emissions to a state-of-science bottom-up isoprene emission inventory (MEGAN) driven by two land cover databases, and use the results to optimize the MEGAN emission factors (EFs) for broadleaf trees (the main isoprene source). The OMI-derived isoprene emissions in North America (June–August 2006) with 1° × 1° resolution are spatially consistent with MEGAN (R2 = 0.48–0.68) but are lower (by 4–25% on average). MEGAN overestimates emissions in the Ozarks and the Upper South. A better fit to OMI (R2 = 0.73) is obtained in MEGAN by using a uniform isoprene EF from broadleaf trees rather than variable EFs. Thus MEGAN may overestimate emissions in areas where it specifies particularly high EFs. Within-canopy isoprene oxidation may also lead to significant differences between the effective isoprene emission to the atmosphere seen by OMI and the actual isoprene emission determined by MEGAN.Earth and Planetary SciencesEngineering and Applied Science
Anisotropic field dependence of the magnetic transition in Cu2Te2O5Br2
We present the results of measurements of the thermal conductivity of
Cu2Te2O5Br2, a compound where tetrahedra of Cu^{2+} ions carrying S=1/2 spins
form chains along the c-axis of the tetragonal crystal structure. The thermal
conductivity kappa was measured along both the c- and the a-direction as a
function of temperature between 3 and 300 K and in external magnetic fields H
up to 69 kOe, oriented both parallel and perpendicular to the c-axis. Distinct
features of kappa(T) were observed in the vicinity of T_N=11.4 K in zero
magnetic field. These features are unaltered in external fields which are
parallel to the c-axis, but are more pronounced when a field is applied
perpendicularly to the c-axis. The transition temperature increases upon
enhancing the external field, but only if the field is oriented along the
a-axis.Comment: 5 pages, 3 figure
- …
