5,157 research outputs found

    Spin-Peierls transition with strong structural fluctuations in the vanadium oxide VOSb2_{2}O4_{4}

    Full text link
    We report on the magnetic susceptibility and electron spin resonance measurements on polycrystalline samples of the vanadium oxide VOSb2_{2}O4_{4}, a quasi-one dimensional S=1/2 Heisenberg system. We show that the susceptibility vanishes at zero temperature, as in a gapped system, and we argue that this is due to a spin-Peierls transition with strong structural fluctuations.Comment: 5 pages, 4 figure

    Hypoxia-Induced Oxidative Stress Modulation with Physical Activity.

    Get PDF
    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed

    Loop algorithm for Heisenberg models with biquadratic interaction and phase transitions in two dimensions

    Full text link
    We present a new algorithm for quantum Monte Carlo simulation based on global updating with loops. While various theoretical predictions are confirmed in one dimension, we find, for S=1 systems on a square lattice with an antiferromagnetic biquadratic interaction, that the intermediate phase between the antiferromagnetic and the ferromagnetic phases is disordered and that the two phase transitions are both of the first order in contrast to the one-dimensional case. It is strongly suggested that the transition points coincide those at which the algorithm changes qualitatively.Comment: 4 pages including 4 figures, to appear in JPS

    Logarithmic asymptotics of the densities of SPDEs driven by spatially correlated noise

    Full text link
    We consider the family of stochastic partial differential equations indexed by a parameter \eps\in(0,1], \begin{equation*} Lu^{\eps}(t,x) = \eps\sigma(u^\eps(t,x))\dot{F}(t,x)+b(u^\eps(t,x)), \end{equation*} (t,x)\in(0,T]\times\Rd with suitable initial conditions. In this equation, LL is a second-order partial differential operator with constant coefficients, σ\sigma and bb are smooth functions and F˙\dot{F} is a Gaussian noise, white in time and with a stationary correlation in space. Let p^\eps_{t,x} denote the density of the law of u^\eps(t,x) at a fixed point (t,x)\in(0,T]\times\Rd. We study the existence of \lim_{\eps\downarrow 0} \eps^2\log p^\eps_{t,x}(y) for a fixed yRy\in\R. The results apply to a class of stochastic wave equations with d{1,2,3}d\in\{1,2,3\} and to a class of stochastic heat equations with d1d\ge1.Comment: 39 pages. Will be published in the book " Stochastic Analysis and Applications 2014. A volume in honour of Terry Lyons". Springer Verla

    Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    Get PDF
    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a<sup>−1</sup>, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a<sup>−1</sup>, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NO<sub>x</sub> ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a<sup>−1</sup>. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a<sup>−1</sup>) and anthropogenic emissions (2 Tg a<sup>−1</sup>). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NO<sub>x</sub>: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a<sup>−1</sup> and 7.8 Tg a<sup>−1</sup>, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel

    Sex and Exercise Intensity Do Not Influence Oxygen Uptake Kinetics in Submaximal Swimming.

    Get PDF
    The aim of this study was to compare the oxygen uptake ([Formula: see text]) kinetics in front crawl between male and female swimmers at moderate and heavy intensity. We hypothesized that the time constant for the primary phase [Formula: see text] kinetics was faster in men than in women, for both intensities. Nineteen well trained swimmers (8 females mean ± SD; age 17.9 ± 3.5 years; mass 55.2 ± 3.6 kg; height 1.66 ± 0.05 m and 11 male 21.9 ± 2.8 years; 78.2 ± 11.1 kg; 1.81 ± 0.08 m) performed a discontinuous maximal incremental test and two 600-m square wave transitions for both moderate and heavy intensities to determine the [Formula: see text] kinetics parameters using mono- and bi-exponential models, respectively. All the tests involved breath-by-breath analysis of front crawl swimming using a swimming snorkel. The maximal oxygen uptake [Formula: see text] was higher in men than in women [4,492 ± 585 ml·min(-1) and 57.7 ± 4.4 ml·kg(-1)·min(-1) vs. 2,752.4 ± 187.9 ml·min(-1) (p ≤ 0.001) and 50.0 ± 5.7 ml·kg(-1)·min(-1)(p = 0.007), respectively]. Similarly, the absolute amplitude of the primary component was higher in men for both intensities (moderate: 1,736 ± 164 vs. 1,121 ± 149 ml·min(-1); heavy: 2,948 ± 227 vs. 1,927 ± 243 ml·min(-1), p ≤ 0.001, for males and females, respectively). However, the time constant of the primary component (τp) was not influenced by sex (p = 0.527) or swimming intensity (p = 0.804) (moderate: 15.1 ± 5.6 vs. 14.4 ± 5.1 s; heavy: 13.5 ± 3.3 vs. 16.0 ± 4.5 s, for females and males, respectively). The slow component in the heavy domain was not significantly different between female and male swimmers (3.2 ± 2.4 vs. 3.8 ± 1.0 ml·kg(-1)·min(-1), p = 0.476). Overall, only the absolute amplitude of the primary component was higher in men, while the other [Formula: see text] kinetics parameters were similar between female and male swimmers at both moderate and heavy intensities. The mechanisms underlying these similarities remain unclear

    Anisotropic field dependence of the magnetic transition in Cu2Te2O5Br2

    Full text link
    We present the results of measurements of the thermal conductivity of Cu2Te2O5Br2, a compound where tetrahedra of Cu^{2+} ions carrying S=1/2 spins form chains along the c-axis of the tetragonal crystal structure. The thermal conductivity kappa was measured along both the c- and the a-direction as a function of temperature between 3 and 300 K and in external magnetic fields H up to 69 kOe, oriented both parallel and perpendicular to the c-axis. Distinct features of kappa(T) were observed in the vicinity of T_N=11.4 K in zero magnetic field. These features are unaltered in external fields which are parallel to the c-axis, but are more pronounced when a field is applied perpendicularly to the c-axis. The transition temperature increases upon enhancing the external field, but only if the field is oriented along the a-axis.Comment: 5 pages, 3 figure
    corecore