71 research outputs found

    A practical engineering approach to the design and manufacturing of a mini kW blade wind turbine : definition, optimisation and CFD analysis

    Get PDF
    A practical engineering approach to the design of a 60 kW wind generator with improved performances is presented. The proposed approach relies on the use of a specific, “ad hoc” developed software, OPTIWR (Optimization Software), expressly conceived to define an “optimum” rotor configuration in the framework of the blade element-momentum theory. Starting from an initial input geometric configuration (corresponding to an already existing 50 kW turbine) and for given values of the wind velocity Vwind and of the advance ratio X = Vwind/ΩR (where Ω is the blade rotational speed and R is the propeller radius), this software is used to determine iteratively the optimized distributions of chords and twists which can guarantee a constant value of the socalled axial induction factor a = 1/3 along the blade. The output configuration is then converted into a CAD model to be used, in turn, as input data for a CFD commercial software. With this tool the relative rotational motion between the fluid and the wind turbine are simulated resorting to a MRF (Moving Reference Frame) technique (for which continuity and momentum equations are solved in a rotating reference frame). The outcomes of the numerical simulations are then used to verify the improved performances of the optimized configuration and to which extent the CFD data agree with “expected” behaviours (i.e. performances predicted on the basis of the simplified model). Finally, some details about the construction technique used to turn the optimized configuration into an effective working prototype are provided, in conjunction with a critical discussion of suitable production methods for composite components

    The JEREMI-project on thermocapillary convection in liquid bridges. Part A : Overview of particle accumulation structures

    Get PDF
    The rapid accumulation of particles suspended in a thermocapillary liquid bridge is planned to be investigated during the JEREMI experiment on the International Space Station scheduled for 2016. An overview is given of the current status of experimental and numerical investigations of this phenomenon

    The JEREMI-project on thermocapillary convection in liquid bridges. Part B : Overview on impact of co-axial gas flow

    Get PDF
    Pure surface-tension-driven flow is a unique type of flow that can be controlled through external manipulation of thermal and/or mechanical boundary conditions at the free liquid surface where the entire driving force for the convection is generated. This unique feature has been exploited in recent studies for the active control of the flow instability. The use of forced coaxial gas streams has been proposed as a way to stabilize the Marangoni convection in liquid bridges in the planned space experiment JEREMI (Japanese and European Research Experiment on Marangoni Instabilities). It is aimed at understanding the mechanism of the instability and the role of the surface heat transfer and surface shear stresses. This overview presents corresponding preparatory experimental and numerical studies

    Adipose Tissue, Bile Acids, and Gut Microbiome Species Associated With Gallstones After Bariatric Surgery

    Get PDF
    Several risk factors are associated with gallstone disease after bariatric surgery, but the underlying pathophysiological mechanisms of gallstone formation are unclear. We hypothesize that gallstone formation after bariatric surgery is induced by different pathways compared with gallstone formation in the general population, since postoperative formation occurs rapidly in patients who did not develop gallstones in preceding years. To identify both pathophysiological and potentially protective mechanisms against postoperative gallstone formation, we compared the preoperative fasting metabolome, fecal microbiome, and liver and adipose tissue transcriptome obtained before or during bariatric surgery of obese patients with and without postoperative gallstones. In total, 88 patients were selected from the BARIA longitudinal cohort study. Within this group, 32 patients had postoperative gallstones within 2 years. Gut microbiota metagenomic analyses showed group differences in abundance of 41 bacterial species, particularly abundance of Lactobacillaceae and Enterobacteriaceae in patients without gallstones. Subcutaneous adipose tissue transcriptomic analyses revealed four genes that were suppressed in gallstone patients compared with patients without gallstones. These baseline gene expression and gut microbiota composition differences might relate to protective mechanisms against gallstone formation after bariatric surgery. Moreover, baseline fasting blood samples of patients with postoperative gallstones showed increased levels of several bile acids. Overall, we revealed different genes and bacteria associated with gallstones than those previously reported in the general population, supporting the hypothesis that gallstone formation after bariatric surgery follows a different trajectory. Further research is necessary to confirm the involvement of the bile acids, adipose tissue activity, and microbial species observed here

    A systems biology approach to study non-alcoholic fatty liver (NAFL) in women with obesity

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is now the most frequent global chronic liver disease. Individuals with NAFLD exhibited an increased risk of all-cause mortality driven by extrahepatic cancers and liver and cardiovascular disease. Once the disease is established, women have a higher risk of disease progression and worse outcome. It is therefore critical to deepen the current knowledge on the pathophysiology of NAFLD in women. Here, we used a systems biology approach to investigate the contribution of different organs to this disease. We analyzed transcriptomics profiles of liver and adipose tissues, fecal metagenomes, and plasma metabolomes of 55 women with and without NAFLD. We observed differences in metabolites, expression of human genes, and gut microbial features between the groups and revealed that there is substantial crosstalk between these different omics sets. Multi-omics analysis of individuals with NAFLD may provide novel strategies to study the pathophysiology of NAFLD in humans

    Type 2 diabetes is associated with increased circulating levels of 3-hydroxydecanoate activating GPR84 and neutrophil migration

    Get PDF
    Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here, we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with nondiabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes

    A systems biology approach to understand gut microbiota and host metabolism in morbid obesity: design of the BARIA Longitudinal Cohort Study

    Get PDF
    Introduction: Prevalence of obesity and associated diseases, including type 2 diabetes mellitus, dyslipidaemia and non-alcoholic fatty liver disease (NAFLD), are increasing. Underlying mechanisms, especially in humans, are unclear. Bariatric surgery provides the unique opportunity to obtain biopsies and portal vein blood-samples. Methods: The BARIA Study aims to assess how microbiota and their metabolites affect transcription in key tissues and clinical outcome in obese subjects and how baseline anthropometric and metabolic characteristics determine weight loss and glucose homeostasis after bariatric surgery. We phenotype patients undergoing bariatric surgery (predominantly laparoscopic Roux-en-Y gastric bypass), before weight loss, with biometrics, dietary and psychological questionnaires, mixed meal test (MMT) and collect fecal-samples and intra-operative biopsies from liver, adipose tissues and jejunum. We aim to include 1500 patients. A subset (approximately 25%) will undergo intra-operative portal vein blood-sampling. Fecal-samples are analyzed with shotgun metagenomics and targeted metabolomics, fasted and postprandial plasma-samples are subjected to metabolomics, and RNA is extracted from the tissues for RNAseq-analyses. Data will be integrated using state-of-the-art neuronal networks and metabolic modeling. Patient follow-up will be ten years. Results: Preoperative MMT of 170 patients were analysed and clear differences were observed in glucose homeostasis between individuals. Repeated MMT in 10 patients showed satisfactory intra-individual reproducibility, with differences in plasma glucose, insulin and triglycerides within 20% of the mean difference. Conclusion: The BARIA study can add more understanding in how gut-microbiota affect metabolism, especially with regard to obesity, glucose metabolism and NAFLD. Identification of key factors may provide diagnostic and therapeutic leads to control the obesity-associated disease epidemic

    Thermal Flows

    Get PDF
    Flows of thermal origin and heat transfer problems are central in a variety of disciplines and industrial applications. The present book entitled Thermal Flows consists of a collection of studies by distinct investigators and research groups dealing with different types of flows relevant to both natural and technological contexts. Both reviews of the state-of-the-art and new theoretical, numerical and experimental investigations are presented, which illustrate the structure of these flows, their stability behavior, and the possible bifurcations to different patterns of symmetry and/or spatiotemporal regimes. Moreover, different categories of fluids are considered (liquid metals, gases, common fluids such as water and silicone oils, organic and inorganic transparent liquids, and nano-fluids). This information is presented under the hope that it will serve as a new important resource for physicists, engineers and advanced students interested in the physics of non-isothermal fluid systems; fluid mechanics; environmental phenomena; meteorology; geophysics; and thermal, mechanical and materials engineering
    • …
    corecore