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SUMMARY

Non-alcoholic fatty liver disease (NAFLD) is now themost frequent global chronic
liver disease. Individuals with NAFLD exhibited an increased risk of all-cause mor-
tality driven by extrahepatic cancers and liver and cardiovascular disease. Once
the disease is established, women have a higher risk of disease progression and
worse outcome. It is therefore critical to deepen the current knowledge on the
pathophysiology of NAFLD inwomen. Here, we used a systems biology approach
to investigate the contribution of different organs to this disease. We analyzed
transcriptomics profiles of liver and adipose tissues, fecal metagenomes, and
plasmametabolomes of 55womenwith andwithout NAFLD.We observed differ-
ences in metabolites, expression of human genes, and gut microbial features be-
tween the groups and revealed that there is substantial crosstalk between these
different omics sets. Multi-omics analysis of individuals with NAFLD may provide
novel strategies to study the pathophysiology of NAFLD in humans.

INTRODUCTION

As a consequence of the pandemic spread of obesity, NAFLD is now recognized as the most prevalent

chronic liver disease worldwide (Younossi et al., 2018). In the general population, one in four individuals

is affected by NAFLD; this prevalence increases to over 80% in individuals with obesity (Younossi et al.,

2018). NAFLD comprises a spectrum of clinical and histopathological abnormalities. These include simple

steatosis and steatosis with mild inflammation (non-alcoholic fatty liver, NAFL) as well as steatosis with

ballooning and inflammation (non-alcoholic steatohepatitis, NASH). Accumulation of fat in hepatocytes

has long been considered a relatively benign condition. However, an estimated 30% of people with

NAFL will develop NASH, a progressive form of liver disease that can lead to liver fibrosis, cirrhosis, and

hepatocellular carcinoma (Farrell and Larter 2006). Advanced forms of NASH often require liver transplan-

tation and are the main cause of liver-related deaths in NAFLD (Younossi et al., 2018). A recent report of a

large nationwide cohort study investigating overall and cause-specific mortality in long-term follow-up of

individuals with NAFLD, however, showed that individuals with NAFL also exhibited an increased risk of all-

cause mortality driven by extrahepatic cancers and liver and cardiovascular disease (CVD) (Simon et al.,

2020). Of concern, especially women with NAFLD are more susceptible to develop excess CVD events

compared to age-matched men (Allen et al., 2019). In fact, NAFLD has a cardiovascular aging effect of

approximately 18 years in women. Moreover, in general, women have a lower risk of developing NAFLD,

but once the disease is established, women have a higher risk of disease progression (Balakrishnan

et al., 2021). The rapidly growing prevalence of NAFLD and lack of effective treatment options to tackle

this potentially debilitating disease will further increase obesity-related burden on public health and econ-

omies. In order to develop appropriate, sex-specific non-invasive diagnostic methods and treatment op-

tions, it is critical to deeply investigate the complex pathophysiology of NAFLD.

The underlying mechanisms that govern hepatic lipid accumulation and the predisposition to inflammation

and fibrosis are complex and multifactorial, which is recapitulated in the multi-hit hypothesis that impli-

cates that a myriad of factors are acting in a parallel and synergistic manner (Buzzetti et al. 2016). These
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factors include insulin resistance, adipocyte dysfunction, genetic variants, bile acid metabolism, the gut mi-

crobiome, and lipotoxicity (Aron-Wisnewsky et al., 2020; Marjot et al., 2020). The complexity of the contrib-

uting factors can mask different structural associations between metabolic activities in different tissues,

prohibiting in-depth insight into molecular mechanisms underlying disease development. By applying a

systems biology approach using multi-omics data, it is possible to deep phenotype individuals with or

without metabolic diseases and, through data integration, identify the crosstalk between different relevant

biological layers.

We here used a global approach to investigate factors that may contribute to NAFL development in

women. Our systems biology approach allowed for integration of transcriptomics, metagenomics, and

plasma metabolomics datasets from obese women with and without NAFL. Analyses of these integrated

omics sets revealed a robust NAFL signature and highlight the additive value of a multi-omics approach

to study NAFL pathophysiology.

RESULTS

To take a comprehensive approach to investigate factors that may contribute to NAFL development, we

included individuals from our bariatric surgery cohort (the BARIA study) (van Olden et al., 2020), but

excluded patients with type 2 diabetes mellitus (T2DM) to avoid confounding effects of long-term hyper-

glycemia or medication use. Since there are strong sex differences in hepatocellular and systemic pro-

cesses in the pathophysiology and progression of NAFLD (Lonardo et al., 2019; Vandel et al., 2020), we

focused on women. The study cohort comprised of 55 women for whom a multi-omics dataset was avail-

able, including fasting and two-hour post mixed meal test (MMT) plasma metabolome, liver and adipose

tissue (subcutaneous and mesenteric) transcriptome, along with gut microbial metagenome. In addition,

we analyzed the glucose and insulin response during the MMT before and one year after bariatric surgery

to investigate differences in glucose metabolism between women with and without NAFL.

In total, 23 individuals (BMI 39.4 G 3.0 kg/m2, age 45 G 11 years) fulfilled the criteria for NAFL (biopsy-

proven) whereas 32 individuals (BMI 40.2 G 4.7 kg/m2, age 41 G 10 years) had no NAFL (Table 1). NAFL

ranged from grade 1 to grade 2 steatosis; none of our individuals had hepatocyte ballooning, a prerequi-

site for NASH diagnosis according to the SAF criteria (Bedossa et al., 2014). As expected, the ALT levels

were increased in the NAFL group, whereas comorbidities such as insulin resistance (as assessed by

MMT) and medication did not differ between groups, indicating a homogenous study population (Table 1,

Figures S1 and S2).

The gut microbial communities of individuals with and without NAFL significantly differ

To characterize the gut microbiome in individuals with and without NAFL, we performed whole-genome

shotgun sequencing of the fecal DNA and used MEDUSA to obtain taxonomic information (Karlsson

et al. 2014). In order to assess if there is a difference in microbial alpha diversity between individuals

with and without NAFL, we used a series of different metrics (Observed, Chao1, ACE, Shannon, Simpson,

and Inverse Simpson). According to the alpha diversity metrics, themicrobial diversity was similar in the two

groups, which is in contrast to previous reports (Leung et al., 2016; Hoyles et al., 2018) (Figure S3). These

previous observations analyzed individuals with a more progressive form of NAFLD (i.e., NASH). In agree-

ment with previous studies (Boursier et al., 2016; Loomba et al., 2017; Caussy et al., 2019), we observed that

the microbiome was dominated by Firmicutes in individuals with NAFL, while Bacteroidetes was the most

dominant phylum in individuals without NAFL (Figure 1A). We next assessed the bacterial species compo-

sition per individual (Figure S4). Even though we observed large inter-individual variation in the gut micro-

biome composition, PERMANOVA and beta dispersion analysis revealed that the two groups largely

spatially overlap but have different centroids and different dispersions (Figure S5). In total, 57 bacterial spe-

cies differed significantly between individuals with and without NAFL (Figure 1A). Three bacterial species

were at least twice as abundant in individuals with NAFL (Table S1). One of these species belonged to the

phylum Actinobacteria (Collinsela stercoris) whereas two belonged to Firmicutes (Lactobacillus buchneri

and Lactobacillus iners). In individuals without NAFL, 11 bacterial species were at least twice as abundant

compared to individuals with NAFL. Of these 11 bacterial species, six belonged to the phylum Bacteroi-

detes (Prevotella oulorum, Prevotella sp. oral taxon 317, Prevotella sp. Oral taxon 472, Prevotella multisac-

charivorax, Prevotella dentalis, and Prevotella bryantii), two belonged to Firmicutes (Lactobacillus del-

brueckii and Enterococcus casseliflavus), and three belonged to Proteobacteria (Citrobacter rodentium,

Yersinia enterocolitica, and Haemophilus pittmaniae). In summary, even though alpha diversity did not
2 iScience 25, 104828, August 19, 2022



Table 1. Baseline characteristics of the 55 women included

Characteristics Non-NAFL = 32 NAFL = 23

Demographic

Age (years) 41 G 10 45 G 11

Anthropometric

BMI (kg/m2) 40.2 G 4.7 39.4 G 3.0

Type 2 diabetes mellitus (n) 0 0

Clinical lab values (normal range)

ALP (30–135 U/L) 85 G 21 84 G 19

g-GT (10 – 40 IU/L) 26 (18–26) 28 (18–41)

ALT (0–50 IU/L) 25 (18–27) 36 (22–42)*

AST (0 – 35 IU/L) 22 G 4 26 G 6

FPG (<5.6 mmol/L) 5.4 G 0.5 5.6 G 0.6

HbA1c (<5.6%) 5.4 G 0.3 5.6 G 0.2

HbA1c (mmol/mol) 35 G 3 37 G 2

Total cholesterol (1.5 – 6.5 mmol/L) 4.9 G 1.1 4.9 G 1.1

Triglycerides (<1.7 mmol/L) 1.4 (0.9–1.5) 1.7 (1.1–1.9)

HDL cholesterol (R1.0 mmol/L) 1.3 G 0.4 1.2 G 0.3

LDL cholesterol (< 3.0 mmol/L) 3.1 G 1.1 3.2 G 0.8

Histological parameters (number)

Steatosis grade score (0,1,2,3) 32,0,0,0 0,22,1,0

Lobular inflammation score (0,1,2) 14,17,1 0,21,2

Hepatocyte ballooning score (0,1,2) 32,0,0 23,0,0

Data is expressed as meanG standard deviation or as median (interquartile range) depending on normality of the data. For

histological scores, the number of individuals with a certain score is shown according to the Steatosis Activity and Fibrosis

score (SAF).

NAFL, Non-Alcoholic Fatty Liver; BMI, body mass index; ALP, alkaline phosphatase; g-GT, gamma glutamyl transferase; ALT,

alanine aminotransferase; AST, aspartate aminotransferase; FPG, fasting plasma glucose; HbA1c, Hemoglobin A1c; HDL,

high-density lipoprotein; LDL, low-density lipoprotein.

*indicate significant (p < 0.05) difference. Significance was calculated by either independent T test or Mann-Whitney U test

depending on normality
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differ significantly between the two groups, 57 bacterial species differed significantly and mainly belonged

to the Bacteroidetes and Firmicutes phylum.

The NAFL-associated metabolome is characterized by increased lipid and amino acids in

postprandial conditions

Since microbiome-associated factors such as microbial metabolites are more and more recognized as dis-

ease-modifying factors, including in NAFL development (Aron-Wisnewsky et al., 2020), we performed

plasma metabolomics analyses on fasting and post MTT samples to reveal metabolite-based phenotypes

of NAFL. Out of 988 metabolites, phosphathidylcholine 1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) was

the only significantly altered metabolite in fasted individuals and was lower in individuals with NAFL (Fig-

ure 2, Table S2). Since humans rarely reside in a fasting state for a long period of time, the liver is contin-

uously exposed to nutrients and (microbial) metabolites from the intestine. Thus, postprandial plasma sam-

ples might provide a more representative view on circulating metabolites in individuals with NAFL. Indeed,

seven metabolites differed significantly in the postprandial state. Five metabolites were more abundant in

NAFL and two were more abundant in non-NAFL individuals (Figure 2, Table S3). Two sphingomyelin me-

tabolites were decreased in individuals with NAFL whereas diacylglycerol, a signaling lipid previously

linked to hepatic insulin resistance and NAFLD (Samuel and Shulman 2018), was more abundant in individ-

uals with NAFL. In agreement with previous studies demonstrating that circulating amino acids are

increased in individuals with NAFL (Kalhan et al., 2011; Gaggini et al., 2018), the branched-chain amino

acids (BCAA) derivatives 1-carboxyethylisoleucine and 1-carboxyethylvaline were increased in individuals
iScience 25, 104828, August 19, 2022 3
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Figure 1. Microbial species and phyla between individuals with and without NAFL

(A) Difference in total abundance of bacterial species indicated at the phylum level between individuals with and without

NAFL.

(B) Relative abundance and distribution within of differentially significant microbial species between individuals with and

without NAFL.

(C) 57 differentially significant microbial species between individuals with and without NAFL, after differential microbial

species analysis with DESeq2 (adjusted p < 0.1) Likelihood Ratio Test for significance.
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with NAFL. Alterations in amino acids in cardiometabolic disease have been tightly linked to insulin resis-

tance. Since both insulin and glucose levels did not differ during theMMT (Figure S2), our data suggest that

these alterations may be independent of altered glucose metabolism.

Distinct transcriptional profiles in liver, subcutaneous, and mesenteric adipose tissue

Since several studies have demonstrated that (microbial) metabolites exert metabolic actions on distal tis-

sues and organs (Krautkramer et al. 2020), we profiled hepatic, mesenteric, and subcutaneous adipose tis-

sue transcriptomes to improve our understanding of the interrelation between alterations in the plasma

metabolome and gene expression. By using DESeq2 (Love et al. 2014), we identified differently expressed
4 iScience 25, 104828, August 19, 2022



Figure 2. Log scale abundance of differentially significant metabolites between individuals with and without NAFL in fasting and postprandial

plasma metabolomics

Differential metabolite analysis was conducted with the HybridMtest package and p-adjusted based on Estimated Bayesian Probability (p < 0.1).
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genes between individuals with and without NAFL. Analyses of the hepatic transcriptome identified 52

genes that were differently expressed between individuals with and without NAFL. Of these genes, 13

were upregulated and 39 were downregulated in individuals with NAFL compared to individuals without

NAFL (Table S4). KEGG pathway enrichment analysis using EnrichR (Chen et al., 2013) identified that path-

ways involved in several cancers were enriched in individuals with NAFL, which may indicate increased cell

proliferation. Furthermore, the hypoxia-inducible factor 1 (HIF-1) signaling pathway, which has previously

been linked to NAFLD pathogenesis (Semenza 2007), was enriched in the liver of individuals with NAFL. The

only significant pathway that was enriched in individuals without NAFL was the pathway involved in arginine

and proline metabolism (Table 2). Since adipose tissue and the liver communicate with each other (Azzu

et al., 2020), we next investigated the transcriptome of two different adipose tissue depots. In subcutane-

ous adipose tissue, 19 genes were significantly different between the groups of which 15 were higher in

individuals with NAFL and four were higher in individuals without NAFL (Table S5). The mesenteric adipose

tissue transcriptome revealed that 56 genes differed significantly between individuals with and without

NAFL. Of these, 34 genes were upregulated and 22 genes were downregulated in individuals with NAFL

compared to individuals without NAFL (Table S6).
iScience 25, 104828, August 19, 2022 5



Table 2. KEGG metabolic pathways up- or downregulated in individuals with and without NAFL

Tissue Regulation Pathway P-value

Liver Upregulated in NAFL HIF-1 signaling pathway 0.0019

Bladder cancer 0.026

Endometrial cancer 0.037

Central carbon metabolism in cancer 0.041

Non-small-cell lung cancer 0.042

Arginine and proline metabolism 0.089

Downregulated in NAFL Pyrimidine metabolism 0.103

Cortisol synthesis and secretion 0.116

Bile secretion 0.128

Drug metabolism 0.186

Mesenteric adipose tissue Upregulated in NAFL Galactose metabolism 2.119E-7

Carbohydrate digestion and absorption 5.6684E-5

Protein digestion and absorption 4.767E-4

Starch and sucrose metabolism 0.002

Fat digestion and absorption 0.002

Downregulated in NAFL Prion diseases 0.036

Legionellosis 0.056

Complement and coagulation cascades 0.080

Systemic lupus erythematosus 0.1308

Herpes simplex virus 1 infection 0.407

Subcutaneous adipose tissue Upregulated in NAFL IL-17 signaling pathway 4.253E-5

AGE-RAGE signaling pathway in diabetic complications 5.283E-5

TNF signaling pathway 7.019E-5

Prion diseases 3.079E-4

African trypanosomiasis 3.444E-4

Downregulated in NAFL Regulation of response to oxidative stress 0.002

Regulation of response to stress 0.002

Positive regulation of G2/M transition of mitotic cell cycle 0.003

Positive regulation of cell cycle G2/M phase transition 0.003

Positive regulation of peptidyl-threonine phosphorylation 0.005
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According to KEGG pathway analysis, interleukin (IL)-17, advanced glycation end products (AGE), and tu-

mor necrosis factor (TNF),signaling pathways were enriched in individuals with NAFL in subcutaneous ad-

ipose tissue, whereas response to oxidative stress was not enriched underscoring the well-established link

between adipose tissue inflammation and NAFL (Arab et al. 2018) (Table 2). In mesenteric adipose tissue,

carbohydrate, galactose, sucrose, and protein metabolism pathways were enriched in mesenteric adipose

tissue from individuals with NAFL, while pathways involved in infectious diseasewere not enriched (Table 2).

Furthermore, pathways associated with fat digestion and absorption were enriched in individuals with

NAFL. This further strengthens the link between alterations in diacylglycerol and adipose tissue dysfunc-

tion. Transcriptome analyses from all three tissues showed distinct differences in gene expression and

pathways relevant for the development of NAFL such as HIF-1 signaling, inflammation, and fat digestion

and absorption.

Multi-omics integration creates a signature for NAFL

The individual omics datasets thus far revealed differences in the fecal metagenome, the plasma metab-

olome, and tissue transcriptome between the groups. However, discriminative, analyses of these individual

omics sets do not provide insight in the interrelation between the different biological layers. We therefore

constructed a multivariate model to identify crosstalk events between these different tissues and metage-

nomic, metabolomic, and clinical datasets by fitting a sparse partial least squares discriminant analysis with
6 iScience 25, 104828, August 19, 2022
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Figure 3. DIABLO analysis and correlations among multi-omics datasets for individuals with and without NAFL

(A) Total correlation matrix for all the different omic datasets after Sparse Partial Least Squares Regression with mixOmix

DIABLO. Highest correlation is observed for genes from liver and mesenteric adipose tissue.

(B) Circular correlation plot by Data Integration Analysis for Biomarker discovery using a Latent cOmponents (mixOmics

DIABLO), for top contributing components to from each omics dataset (metabolites, genes, and bacterial species).

Correlation cut-off is r = 0.6. Signature involves Prevotella species, branched-chain amino acid metabolites, sphingolipid

metabolites, diacyglycerols, liver genes highly involved in cancer pathways, renin-angiotensin system, mesenteric adi-

pose tissue genes involved in carbohydrate metabolism and subcutaneous adipose tissue genes involved in mitochon-

drial translation/elongation.
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Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) (Singh et al., 2019).

DIABLO simultaneously calculates the correlations between all input omics datasets and selects a minimal

set of input variables that differentiate between individuals with and without NAFL. This approach revealed

correlations between the different tissues. The correlation between liver and mesenteric adipose tissue

transcriptomics particularly stands out (r = 0.8), followed by liver transcriptomics and the fecal metagenome

(r = 0.67; Figure 3A).

In addition, the full correlation matrix revealed the interrelation between particular metabolites, bacterial

species, and genes that can be used to generate biological hypotheses that can be used to further unravel

the pathophysiology or develop next-generation therapeutic strategies for NAFL (Figure 3B). For example,

N-acetyl-2-aminooctanoate, Lactobacillus sakei, hepatic TRIP6 (Thyroid Hormone Receptor Interactor 6),

ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2), andMIR34AHG (MIR34A Host Gene affiliated with the lncRNA

class) were all upregulated in NAFL and correlated positively with each other (rR 0.6), suggesting that this

metabolite could be of bacterial origin, or that the circulating levels are influenced by the gut microbiome.

Moreover, the correlation between this metabolite and TRIP6 and ERBB2, two genes that were recently

identified to play a role in the pathophysiology of NAFLD (Machado et al., 2015; Wang et al., 2016), sug-

gests that upregulation of these genes can be induced via circulating metabolites. In addition, N-acetyl-

2-aminooctanoate was positively correlated with AADACL (Arylacetamide Deacetylase-Like 3) in mesen-

teric adipose tissue, which is a gene involved in lipolysis of adipose tissue and thus contributes to hepatic

triglyceride accumulation (Quiroga and Lehner 2018). To which extent these genes are regulated by bac-

terial strains or metabolites need to be further investigated. 1-carboxyethylvaline was positively correlated

with ACAN in subcutaneous adipose tissue. Furthermore, diacylglycerol was positively correlated with

WFDC1 andACAN in subcutaneous adipose tissue.WFDC1 andACAN in the subcutaneous adipose tissue

were highly enriched in gene sets involved in mitochondrial translation/elongation, suggesting a strong as-

sociation between BCAAs and potential regulative signaling from adipose tissue.

Finally, to quantify the robustness of the individual omics signatures obtained by the integrative analysis,

the power of every chosen omics subset by DIABLO to predict NAFL was assessed (Figure 4). A series of

generalized linear models (GLMs) aimed to investigate whether the minimal discriminatory signal of the

omics could outperform the clinical variables capacity to correctly predict NAFL. As anticipated, the per-

formance of the signature found in the liver transcriptome was very high with an area under the curve of

0.98, followed by the visceral adipose tissue and subcutaneous adipose tissue. The postprandial metabo-

lites and gut microbial species signatures appear to be more accurate prognostic markers of NAFL when

compared to the chosen clinical variables.

To differentiate if these signatures are driven by hepatic steatosis (the prerequisite for NAFLD diagnoses)

or lobular inflammation, we performed the same analyses but then between women with (n = 41) and

without lobular inflammation (n = 14) and observed no distinct differences between al the omics sets sug-

gesting that these signatures are driven mainly by the steatosis component (data now shown).

In summary, the computational framework used here for integrating various omics datasets successfully

identified a highly correlated discriminatory signature for NAFL that included BCAAmetabolites, diacylgly-

cerol, liver genes involved in HIF-1 signaling, mesenteric adipose tissue genes involved in fat metabolism,

and subcutaneous adipose tissue genes that are part of mitochondrial translation/elongation.

Women with NAFL have a different response upon MMT after massive weight loss

To further substantiate that the alterations have clinical relevance, we analyzed the mixed meal data one

year after bariatric surgery. Interestingly, at baseline we did not observe significant differences between
8 iScience 25, 104828, August 19, 2022



Figure 4. AUC predictive capacity for each omic dataset from DIABLO analysis

All the transcriptomics datasets and the chosen genes can very accurately predict NAFL. Both DIABLO chosen Metab-

olome and Metagenome datasets outperform the Clinical variables in NAFL predictive capacity, with AUC = 89.1% and

93.8%, respectively, versus AUC = 70.8%.

ll
OPEN ACCESS

iScience
Article
individuals with and without NAFLD in glucose and insulin response during the MMT, but one year after

bariatric surgery and massive weight loss, a clear difference was observed between the two groups in in-

sulin but not in glucose during the MMT, which was significant (Figure 5). These results further suggest

that whole body metabolism is indeed different in this early phase of the disease. Given the fact that weight

loss and decrease in liver transaminases were not different, these data suggest that these differences are

due to the inherent differences in whole body metabolism.
DISCUSSION

Here, we used a systems biology approach to identify factors that may contribute to NAFL development

by analyzing six omics datasets of 55 women—who only differed in the presence of hepatic steatosis—

including fecal metagenomics, plasma metabolomics, and liver, subcutaneous, and mesenteric adipose

tissue transcriptomics. NAFLD is a multifactorial disease, which is underscored in the present study by

showing that in each individual omics dataset, differences between women with and without NAFL could

be observed. Suggesting that whole body metabolism is already altered in this early stage of the disease.

The alterations in gut microbial composition are in line with previous work conducted by other indepen-

dent groups showing that in subjects with NAFL, the gut microbiome is dominated by members of Firmi-

cutes (Boursier et al., 2016; Loomba et al., 2017). However, our findings are in contrast with a recent report

where liver steatosis was anticorrelated with Firmicutes (Hoyles et al., 2018). Nevertheless, it is plausible

that there is not one uniquemicrobiome signature for NAFLD, bearing in mind that the human microbiome

is shaped by multiple factors such as age, sex, and disease state (Meijnikman et al., 2018). On species level,

we observed a decrease in Prevotella species in individuals with NAFL. Interestingly, most of the Prevotella

species were of oral origin, which is in contrast to previous findings (Atarashi et al., 2017). However, the

mechanism and clinical significance underlying the increased transfer of oral bacteria to the gut remain

to be elucidated. Subtle changes in the plasma metabolome were observed, especially in the post MMT

samples, emphasizing that early changes in metabolism are more pronounced post meal than in fasting
iScience 25, 104828, August 19, 2022 9
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conditions. Alterations in BCAA composition in individuals with cardiometabolic disease are often ex-

plained to be caused by impaired amino acid metabolism linked to insulin resistance in the liver or muscle

(White and Newgard 2019). Since insulin and glucose levels did not differ during the MMT, this indicates

that these changes are independent of insulin resistance and opens up the prospect that these changes

have been derived from another origin, potentially the gut microbiome (Krautkramer et al., 2020). Diacyl-

glycerol, which is associated with NAFLD (Samuel and Shulman 2018), was increased in postMMTplasma of

individuals with NAFL. Diacylglycerol is synthesized intracellularly from specific lipid precursors such as

phosphatidylcholines, possibly including the metabolite that was increased in fasting conditions in individ-

uals with NAFL.

To further investigate the relation between alterations in microbial composition and metabolites in host

metabolism, we analyzed the transcriptome of liver and two adipose tissue depots obtained during sur-

gery. Pathways previously suggested to play a pivotal role in the development of NAFLD such as the

HIF-1 signaling pathway in the liver, fat and glucose metabolism, and inflammation in adipose tissue

were increased in individual with NAFL. Nevertheless, the exact mechanisms that contribute to these path-

ways, especially in early disease, remain largely unknown. Therefore, we constructed a multivariable model

to objectively quantify the crosstalk between these different omics datasets. We observed strong correla-

tions between omics datasets, especially between mesenteric adipose tissue and liver transcriptomic data

(r = 0.8) and between liver and subcutaneous adipose tissue (r = 0.51). These observations are in line with

the current concept that adipocyte dysfunction plays a pivotal role in the pathophysiology of NAFLD (du

Plessis et al., 2015; Arab et al., 2018). Adipose tissue expansion of both the subcutaneous and the visceral

compartment leads to hypoxia-induced hypersecretion of adipocytokines such as tumor necrosis factor

(TNF) and interleukin (IL) 6 by the adipocytes as well as by the inflammatory immune cells that accumulate

in adipose tissue of individuals with obesity (Fernandez-Real et al., 2001; du Plessis et al., 2015). When

reaching the liver through the portal vein, these mediators, together with increased levels of lipid metab-

olites such as diacylglycerols observed duringmetabolic dysregulation, can contribute to the development

and progression of NAFLD (Arab et al., 2018). Interestingly, KEGG pathway enrichment of the differential

significant genes of both mesenteric and subcutaneous adipose tissue revealed that pathways involved in

fat and glucose metabolism and TNF signaling were upregulated in NAFL, respectively, underscoring the

potential role of the adipose tissue in the development of NAFLD.

Recently, it was shown that there is a considerable link between the liver, the gut microbiome, and gut mi-

crobial metabolites (Hoyles et al., 2018). In this study, postprandial metabolomes and fecal metagenomes

in general did not correlate with each other. A more in-depth view, however, revealed associations among

metabolites belonging to amino acid metabolism, bacterial species, and liver genes. For example,

N-acetyl-2-aminooctanoate, Lactobacillus sakei, and hepatic TRIP6, ERBB2, and MIR34A were all upregu-

lated in NAFL and correlated positively with each other (rR 0.6). Of interest, TRIP6, is an upstream activator

of the transcriptional co-activators YAP (or YAP1) and TAZ and are involved in the pathogenesis of NAFLD

(Machado et al., 2015; Wang et al., 2016). Also, genes involved in the hippo-signaling pathway were asso-

ciated with this metabolite and bacterial strains. Hippo-signaling and downstream effectors are involved in

a multitude of cell and non-cell autonomous functions including metabolism, cell proliferation, and survival

(Machado et al., 2015). Interestingly, in the total correlation matrix, non-coding RNAs (LINC02398 and

MIR34AHG) and clone (AC106882.1; AC109811.1) of liver and mesenteric adipose fat were included. To

what extent these non-coding and clones are associated with transcriptional regulation and are involved

in the pathogenesis of NAFL remain to be investigated. Although our results are of associative nature,
10 iScience 25, 104828, August 19, 2022
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DIABLO full matrix correlation highlights the interrelation between metabolites, bacterial species, and

genes and can be used to generate hypothesis to further study the pathophysiology of NAFL in humans.

In conclusion, our study provides a comprehensive multi-omics analysis of women with NAFL, providing a

different strategy to study the pathophysiology of NAFL in women. Even though it is increasingly recog-

nized that NAFL, also referred as ‘‘simple steatosis’’, is more than just the passive accumulation of excessive

fat, we further emphasize this by showing differences in metabolites, genes, and gut microbial species be-

tween individuals with and without NAFL. This is important work considering the fact that women with

NAFLD have a higher change of CVD events, mortality, and disease progressions, even in the absence

of severe hepatic inflammation and scarring (Allen et al., 2019). To what extent these findings are related

to the severe outcome in women remain to be investigated. Lastly, by building a multivariate model, we

revealed that there is substantial crosstalk between these different omics sets. Our model suggests that

in early stages of the disease, adipocyte dysfunction is the predominant factor in disease development fol-

lowed by gut microbial composition and plasma metabolites.

Limitations of the study

We note that the analyses of human omics datasets in our study have some limitations. Here, we used tissue

and plasma samples obtained from women who underwent bariatric surgery, which may introduce relevant

biases in particular pre-operative weight loss with a subsequent decrease in liver volume. However, indi-

viduals who had lost more than 3% of weight in the month prior to surgery or more than 5% six months

before surgery were excluded. We therefore ensure that the samples were obtained in a relatively stable

period. The relatively low number of individuals (n = 55) in this study could potentially introduce bias to

this particular modeling approach, especially since we did not have a validation cohort available to confirm

these signatures. Therefore, external validation of these metabolites is warranted or should be further eval-

uated. Nevertheless, it is considerably challenging to come across similar multi-omics datasets in an

external cohort, postprandial metabolome in particular, that include the same metabolites. Another limi-

tation is that with the current study design we were not able to investigate to what extent the robust NAFL

signature in each omics set contribute to the increased risk of developing CVD or adverse clinical outcome.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human fecal metagenomics data BARIA cohort (PI prof M. Nieuwdorp) (van Olden et al., 2020)

Human liver RNA sequencing data BARIA cohort (PI prof M. Nieuwdorp) (van Olden et al., 2020)

Human subcutaneous adipose tissue sequencing data BARIA cohort (PI prof M. Nieuwdorp) (van Olden et al., 2020)

Human visceral adipose tissue sequencing data BARIA cohort (PI prof M. Nieuwdorp) (van Olden et al., 2020)

Human plasma metabolomics data BARIA cohort (PI prof M. Nieuwdorp) (van Olden et al., 2020)

Deposited data

Liver and adipose tissue transcriptomics European Nucleotide Archive ENA PRJEB47902

Fecal metagenomics European Genome-Phenome Archive EGAS00001005704

Software and algorithms

MEDUSA pipeline n/a (Karlsson et al., 2014)

Bowtie2 n/a (Langmead and Salzberg 2012)

DESeq2 n/a https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

Phyloseq n/a https://bioconductor.org/packages/release/bioc/

html/phyloseq.html

DIABLO n/a http://mixomics.org/mixdiablo/

Other

HiSeq instrument Illumina N/A

DNA extraction kit QIAamp DNA Mini kit N/A
RESOURCE AVAILABILITY

Lead contact

Further information should be directed to and will be fulfilled by the lead contact prof. dr. Max Nieuwdorp

(m.nieuwdorp@amsterdamumc.nl)
Materials availability

This study did not generate new unique reagents.

Data and code availability

Of the individuals listed in the Table S1, high-dimensional data including fecal metagenomics, liver and ad-

ipose tissue transcriptomics is deposited in the European Nucleotide Archive (ENA PRJEB47902) and Eu-

ropean Genome-Phenome Archive (EGAS00001005704) respectively. Code, plasma metabolomics and

clinical data is available upon reasonable request. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethical approvals and patients clinical information

The recruitment of participants was conducted from the BARIA study (van Olden et al., 2020)with a total of

55 individuals included. The baseline characteristics of these participants are described in Table 1. The

study was performed in accordance with the Declaration of Helsinki and was approved by the Academic

Medical Center Ethics Committee of the Amsterdam UMC (Trialregister: BARIA study NL8983). All partic-

ipants provided written informed consent.
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METHOD DETAILS

Material collection

Individuals underwent a complete metabolic work-up at the start of their bariatric surgery trajectory.

Anthropometric measurements including height, weight and waist and hip circumference were taken. In

addition, body fat percentage using bioelectrical impedance and blood pressure were measured. Fasting

blood samples were used for the determination of hemoglobin, HbA1c, glucose, lipid profile, alanine

aminotransferase, aspartate aminotransferase, insulin, and creatinine levels. Within three months before

surgery, a 2-h mixed meal tolerance test (MMT) was performed to assess insulin resistance and investigate

dynamic alterations in circulating metabolites. The MMT consisted of two Nutridrink compact 125mL

(Nutricia�), containing in total 23.3 grams fat, 74.3 grams carbohydrates (of which 38.5 grams sugar) and

24.0 grams protein. The participants received this meal after fasting for a minimum of nine hours. Time

point zero refers to the moment at which the participant had fully consumed the meal. Blood samples

were drawn via an intravenous line at baseline, 10, 20, 30, 60, 90 and 120 min. All samples were stored

at �80�C until further processing.
Liver biopsies and histology

Liver histological sections were stained with Haematoxylin-Eosin and Sirius red and then reviewed bymem-

bers of the Dutch Liver Pathology Panel after training sessions for NAFLD according to the Steatosis, Ac-

tivity and Fibrosis (SAF) score (Bedossa et al., 2014). Difficult borderline cases were discussed during panel

meetings for consensus. NAFLD was categorized into NAFL when steatosis was present in >5% of hepato-

cytes alone or with mild inflammation but without ballooning, or NASH when steatosis was present in >5%

of hepatocytes and if ballooning and inflammation were both present in the biopsy. In the present study, no

individuals were diagnosed with NASH based on histology.
Metabolome processing

EDTA plasma samples under fasting and two-hours after a MMT postprandial conditions were

collected from 55 BARIA participants. All EDTA plasma samples were shipped to METABOLON (Moris-

ville, NC, USA) for performing analysis using ultra high-performance liquid chromatography coupled to

tandem mass spectrometry (LC-MS/MS) untargeted metabolomics. The metabolomic counts obtained,

underwent significant curation via metabolites’ pre-filtering, imputation for subsets of metabolites’

missing values and data normalization, in order to minimize the effect of artifacts in the downstream

analysis. Metabolomics prefiltering and imputation were performed by utilizing a variation of the

Perseus platform (Koh et al., 2018). Essentially, data has been pre-filtered so as to have a maximum

of 25% missing values for a metabolite across all samples. This was followed by a log transformation

of all the measured metabolites’ raw intensities across the entire dataset. Then, we calculated the total

data mean and standard deviation (by omitting missing values). Taking into account that the metabolite

intensities distribution is approximately following normality, we chose a small distribution 2.5 standard

deviations away from the original data mean towards the left tail of the original data distribution, with

0.5 standard deviations width. This new shrunken range corresponds to the actual lowest level of detec-

tion by the spectrometer. Here by drawing random values from this mini distribution, we fill the missing

prefiltered data of choice.

Normalization was conducted to the total signal for each sample, since each sample is a separate injection

on the mass spectrometer. Effective control for changes in sample matrix affects ionization efficiency,

hence there can be inevitable differences in how much each sample is loaded onto the column with

each injection, etc. Therefore, we summed up the total ion intensity (i.e. total signal) for each of the samples

and identified the sample with the lowest total signal. After this we could proceed to calculating the correc-

tion factor for each sample:

CorrectionFactori =
Total signal for each individual samplei

Lowest total signal intensity

Next, we divided each individual metabolite within a sample with the respective CorrectionFactori . Orig-

inally METABOLONmeasured 1345 metabolites, but after applying the above-mentioned methodology of

imputation and normalization we included 988 metabolites for fasting metabolome and 1018 metabolites

for postprandial metabolome.
iScience 25, 104828, August 19, 2022 15



ll
OPEN ACCESS

iScience
Article
Transcriptome processing

Biopsies from liver (55 samples), mesenteric adipose tissue (54 samples) and subcutaneous adipose tissue

(55 samples) were collected at the time of the bariatric surgery. RNA was extracted from biopsies using

TriPure Isolation Reagent (Roche, Basel, Switzerland) and Lysing Matrix D, 2 mL tubes (MP Biomedical, Ir-

vine, CA, USA) in a FastPrep�-24 Instrument (MP Biomedical, Irvine, CA, USAs) with homogenization for

20 s at 4.0 m/s, with repeated bursts until no tissue was visible; homogenates were kept on ice for 5 min

between homogenization bursts if multiple cycles were needed. RNA was purified with chloroform (Merck,

Darmstadt, Germany) in phase lock gel tubes (5PRIME) with centrifugations at 4�C, and further purified and

concentrated using the RNeasy MinElute kit (Qiagen, Venlo, The Netherlands). The quality of RNA was an-

alysed on a BioAnalyzer instrument (Agilent), with quantification on Nanodrop (Thermo Fisher Scientific,

Waltham, MA, USA). Due to degradation of the RNA, libraries for RNAseq sequencing were prepared

by rRNA depletion; library preparation and sequencing were performed at Novogene (Nanjing, China)

on an HiSeq instrument (Illumina Inc., San Diego, CA, USA) with 150 bp paired-end reads and 10G data/

sample. The average read count per sample from liver was 42G 15 million. For mesenteric and subcutane-

ous adipose tissue, the average read count per sample were 43.2 G 20 million. The extracted fastq files

were analyzed with nf-core/rnaseq (Ewels et al., 2020), a bioinformatics analysis pipeline used for RNA

sequencing data. The workflow processed raw data from FastQ inputs (FastQC, TrimGalore!), aligned

the reads (STAR) withHomo sapiensGRCh38 as reference genome, generates gene counts (featureCounts,

StringTie) and performed extensive quality-control on the results (RSeqQC, dupRadar, Preseq, edgeR,

multiQC). The pipeline was built using Nextflow.
Microbiome processing

Fecal samples from 55 participants were collected on the day of surgery and immediately frozen at �80C.

Total fecal genomic DNAwas extracted from 100mg of feces using amodification of the IHMSDNA extrac-

tion protocol Q (Costea et al., 2017). Briefly, fecal samples were extracted in Lysing Matrix E tubes (MP Bio-

medicals) containing ASL buffer (Qiagen, Venlo, The Netherlands), and lysis of cells was obtained, after

homogenization by vortexing for 2 min, by two cycles of heating at 90�C for 10 min followed by three bursts

of bead beating at 5.5 m/s for 60 s in a FastPrep�-24 Instrument (MP Biomedicals). After each bead-beating

burst, samples were placed on ice for 5 min. The supernatants containing fecal DNA were collected after

the two cycles by centrifugation at 4�C. Supernatants from the two centrifugations steps were pooled and a

600 mL aliquot from each sample was purified using the QIAamp DNA Mini kit (QIAGEN, Venlo, The

Netherlands) in the QIAcube (QIAGEN Venlo, The Netherlands) instrument using the procedure for human

DNA analysis. Samples were eluted in 200 mL of AE buffer (10 mmol/L Tris$Cl; 0.5 mmol/L EDTA; pH 9.0).

Libraries for shotgun metagenomic sequencing were prepared by a PCR-free method; library preparation

and sequencing were performed at Novogene (Nanjing, China) on an HiSeq instrument (Illumina Inc. San

Diego, CA, USA) with 150 bp paired-end reads and 6G data/sample.

MEDUSA pipeline was used for pre-processing of raw shotgun metagenomics sequence data. MEDUSA is

an integrated pipeline for analysis of short metagenomic reads, which maps reads to reference databases,

combines output from several sequencing runs andmanipulates tables of read counts. The input number of

total reads from the metagenome analysis were on average 23.4 G 2.2 million reads per sample and the

total aligned reads 16.6 G 1.8 million reads per sample. The sequencing runs had high quality with almost

98% of the reads passing the quality cut-off. Out of the high-quality reads, on average 0.04% aligned to the

human genome, although the data had been cleaned for human reads. Out of the high quality non-human

reads, 78.4% aligned to the MEDUSA’s software gene catalogue. Quality filtered reads were mapped to a

genome catalogue and gene catalogue using Bowtie2 (Langmead and Salzberg 2012).
QUANTIFICATION AND STATISTICAL ANALYSIS

Differential analysis of the plasma metabolome was conducted with two methods: ANOVA and Kruskal

Wallis, with the use of HybridMTest package, that performs hybrid multiple testing using Empirical Bayes

Probability (EBP). The cut-off significance level of p < 0.1 was used for identifying differentially significant

metabolites with an adjusted EBP value.

Differential gene expression analysis for individuals with and without NAFL was performed for liver, subcu-

taneous adipose and mesenteric adipose tissues, respectively, in R with DESeq2 package (Love et al.,

2014); log normalization is based on gene counts geometric distribution. The statistical analysis method
16 iScience 25, 104828, August 19, 2022
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for calculating differential expression rates is the Wald test. After False discovery rate (FDR) correction with

multiple hypothesis testing with IHW package (Ignatiadis et al., 2016), we analyzed genes with p < 0.1 by

DEGreport’s degPatterns function, to identify subgroups of co-expressed genes between individuals with

and without NAFL. For these differentially significant co-expressed genes we performed gene enrichment

with Enrichr platform (Chen et al., 2013) using KEGG metabolic pathways (Kanehisa and Goto 2000).

Statistical analysis on the metagenomics data was performed on rarefied count, (20 M reads per sample).

The taxon ids were input to taxize package (Chamberlain and Szöcs 2014), to get full taxonomic information

and ranking for the species. This dataset was input to DESeq2 and phyloseq packages (McMurdie and

Holmes 2013) for conducting downstreamdifferential statistical analysis. Similar to the BARIA transcriptom-

ics counts, log normalization based on gene counts geometric distribution has been conducted with it. Sta-

tistical analysis methods for calculating differential expression rates was Wald Test. The IHW package, as

part of DESeq2 suite, was utilized for multiple hypothesis testing and adjusting the respective p values, with

alpha significance threshold set at p < 0.1.

Multi-omics integrative analysis has been conducted with DIABLO. DIABLO extends sparce Generalized

Canonical Correlation Analysis (sGCCA), uses singular value decomposition for dimensionality reduction

and selects co-expressed (correlated) variables that can explain the categorical outcome of interest (Ten-

enhaus et al., 2014), in our case non-NAFL or NAFL. DIABLO output a set of latent variables (components)

based on the dimensionality of the input datasets. The chosen number of components could extract suf-

ficient information to discriminate all phenotype groups. Then, a set of coefficients was attributed to

each variable, that indicated the importance of each variable in DIABLO. The goal was to have maximiza-

tion of the covariance between a linear combination of the variables from each input dataset and each cat-

egorical outcome. After tuning these two hyperparameters, DIABLO output a list of selected variables from

each omic dataset, associated to each component, that could distinguish the given phenotypes.
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