218 research outputs found

    Antibiotic resistance of enterobacteria isolated from freshwater bodies of different climatic zones

    Get PDF
    An important problem of our time is the resistance of bacteria to antimicrobial drugs. Surface water bodies accumulate all kinds of antibiotic-resistant bacteria found in the catchment area.The aim. To compare the antibiotic resistance of enterobacteria isolated from freshwater ecosystems of the Murmansk and Ryazan regions.Methods. Isolation was performed by the disk-diffusion method. For species identification, the “Rapid-entero 200 M” test system was used. Sensitivity was determined to 19 antibacterial drugs by the disk diffusion method in accordance with the requirements of MUK 4.2.1980-04 and Clinical guidelines (2014). Data interpretation was carried out using EUCAST v. 7.0 (2017) criteria and the WHONET software package.Results. In 2016, 771 isolates of enterobacteria were isolated from the water bodies of the Ryazan region, 323 isolates from the Murmansk region. The results showed that enterobacteria were found in all surveyed surface water bodies. Citrobacter (36 %), Escherichia coli (21 %) and Providencia (21 %) dominated in the Ryazan region, while Citrobacter (35 %) and Enterobacter (21 %) dominated in the Murmansk region. Enterobacteria resistant to one or more antimicrobials dominate in both regions. The phenotype of multiple drug resistance (MDR) was found in 82.62 % of isolates in Ryazan and 95.98 % in Murmansk regions. The extreme resistance phenotype (XDR) was more common among enterobacteria isolated from water bodies of the Ryazan region. In both districts, there was a fairly high level of resistance to beta-lactam antibiotics. In both regions, the quinolones were the most effective group for inhibiting the growth of enterobacteria.Conclusion. The results of the study show that the spread of antibiotic-resistant isolates of enterobacteria in freshwater ecosystems occurs everywhere, but in northern waters this process is slower

    Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors

    Get PDF
    Type 2 internal ribosomal entry sites (IRESs) of encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV) and other picornaviruses comprise five major domains H-L. Initiation of translation on these IRESs begins with specific binding of the central domain of initiation factor, eIF4G to the J-K domains, which is stimulated by eIF4A. eIF4G/eIF4A then restructure the region of ribosomal attachment on the IRES and promote recruitment of ribosomal 43S pre-initiation complexes. In addition to canonical translation factors, type 2 IRESs also require IRES trans-acting factors (ITAFs) that are hypothesized to stabilize the optimal IRES conformation that supports efficient ribosomal recruitment: the EMCV IRES is stimulated by pyrimidine tract binding protein (PTB), whereas the FMDV IRES requires PTB and ITAF45. To test this hypothesis, we assessed the effect of ITAFs on the conformations of EMCV and FMDV IRESs by comparing their influence on hydroxyl radical cleavage of these IRESs from the central domain of eIF4G. The observed changes in cleavage patterns suggest that cognate ITAFs promote similar conformational changes that are consistent with adoption by the IRESs of comparable, more compact structures, in which domain J undergoes local conformational changes and is brought into closer proximity to the base of domain I

    Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing

    Get PDF
    The universally conserved eukaryotic initiation factor (eIF), eIF1A, plays multiple roles throughout initiation: it stimulates eIF2/GTP/Met-tRNAiMet attachment to 40S ribosomal subunits, scanning, start codon selection and subunit joining. Its bacterial ortholog IF1 consists of an oligonucleotide/oligosaccharide-binding (OB) domain, whereas eIF1A additionally contains a helical subdomain, N-terminal tail (NTT) and C-terminal tail (CTT). The NTT and CTT both enhance ribosomal recruitment of eIF2/GTP/Met-tRNAiMet, but have opposite effects on the stringency of start codon selection: the CTT increases, whereas the NTT decreases it. Here, we determined the position of eIF1A on the 40S subunit by directed hydroxyl radical cleavage. eIF1A's OB domain binds in the A site, similar to IF1, whereas the helical subdomain contacts the head, forming a bridge over the mRNA channel. The NTT and CTT both thread under Met-tRNAiMet reaching into the P-site. The NTT threads closer to the mRNA channel. In the proposed model, the NTT does not clash with either mRNA or Met-tRNAiMet, consistent with its suggested role in promoting the ‘closed’ conformation of ribosomal complexes upon start codon recognition. In contrast, eIF1A-CTT appears to interfere with the P-site tRNA-head interaction in the ‘closed’ complex and is likely ejected from the P-site upon start codon recognition

    Деконтаминация поверхностей от нуклеиновых кислот аэрозолями дезинфицирующих средств

    Get PDF
    Cross-contamination that leads to false positive results is a serious problem for laboratories using the PCR method. There are many ways to solve this problem, but none of them could be considered universal. Treatment with aerosols is the preferable method for decontamination of large areas of complex surfaces. The goal of this study was to determine effective aerosol compositions and regimens for the decontamination of nucleic acids on laboratory surfaces. The decontaminating activity of compounds that release active chlorine and active oxygen was studied using model surfaces contaminated with nucleic acids and bacteria. Effective modes of decontamination with aerosols were established by analysis of obtained experimental data. Differences between decontamination of nucleic acids and bacterial disinfection of the laboratory surfaces are shown.Важной проблемой при работе в ПЦР-лаборатории является возникновение перекрестного загрязнения, которое приводит к появлению ложноположительных результатов. Существует множество способов решения данной проблемы, однако ни один из них не является универсальным. Для деконтаминации сложных поверхностей большой площади предпочтительнее использовать аэрозольный метод обработки. Цель данного исследования заключалась в определении эффективных режимов применения дезинфицирующих средств для деконтаминации от нуклеиновых кислот аэрозольным методом. Анализ деконтаминирующей активности хлорактивных и кислородактивных соединений проводили, моделируя контаминацию поверхностей нуклеиновыми кислотами и бактериями. В процессе работы установлены эффективные режимы проведения аэрозольной деконтаминации. Показаны различия при удалении нуклеиновых кислот и бактериального загрязнения с лабораторных поверхностей

    Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing

    Get PDF
    The universally conserved eukaryotic initiation factor (eIF), eIF1A, plays multiple roles throughout initiation: it stimulates eIF2/GTP/Met-tRNAiMet attachment to 40S ribosomal subunits, scanning, start codon selection and subunit joining. Its bacterial ortholog IF1 consists of an oligonucleotide/oligosaccharide-binding (OB) domain, whereas eIF1A additionally contains a helical subdomain, N-terminal tail (NTT) and C-terminal tail (CTT). The NTT and CTT both enhance ribosomal recruitment of eIF2/GTP/Met-tRNAiMet, but have opposite effects on the stringency of start codon selection: the CTT increases, whereas the NTT decreases it. Here, we determined the position of eIF1A on the 40S subunit by directed hydroxyl radical cleavage. eIF1A's OB domain binds in the A site, similar to IF1, whereas the helical subdomain contacts the head, forming a bridge over the mRNA channel. The NTT and CTT both thread under Met-tRNAiMet reaching into the P-site. The NTT threads closer to the mRNA channel. In the proposed model, the NTT does not clash with either mRNA or Met-tRNAiMet, consistent with its suggested role in promoting the ‘closed’ conformation of ribosomal complexes upon start codon recognition. In contrast, eIF1A-CTT appears to interfere with the P-site tRNA-head interaction in the ‘closed’ complex and is likely ejected from the P-site upon start codon recognition

    Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis

    Get PDF
    Viral proteins are frequently multifunctional to accommodate the high density of information encoded in viral genomes. Matrix (M) protein of negative-stranded RNA viruses such as Rhabdoviridae is one such example. Its primary function is virus assembly/budding but it is also involved in the switch from viral transcription to replication and the concomitant down regulation of host gene expression. In this study we undertook a search for potential rabies virus (RV) M protein's cellular partners. In a yeast two-hybrid screen the eIF3h subunit was identified as an M-interacting cellular factor, and the interaction was validated by co-immunoprecipitation and surface plasmon resonance assays. Upon expression in mammalian cell cultures, RV M protein was localized in early small ribosomal subunit fractions. Further, M protein added in trans inhibited in vitro translation on mRNA encompassing classical (Kozak-like) 5′-UTRs. Interestingly, translation of hepatitis C virus IRES-containing mRNA, which recruits eIF3 via a different noncanonical mechanism, was unaffected. Together, the data suggest that, as a complement to its functions in virus assembly/budding and regulation of viral transcription, RV M protein plays a role in inhibiting translation in virus-infected cells through a protein–protein interaction with the cellular translation machinery

    Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation

    Get PDF
    The HCV internal ribosome entry site (IRES) spans a region of ∼340 nt that encompasses most of the 5′ untranslated region (5′UTR) of the viral mRNA and the first 24–40 nt of the core-coding region. To investigate the implication of altering the primary sequence of the 5′UTR on IRES activity, naturally occurring variants of the 5′UTR were isolated from clinical samples and analyzed. The impact of the identified mutations on translation was evaluated in the context of RLuc/FLuc bicistronic RNAs. Results show that depending on their location within the RNA structure, these naturally occurring mutations cause a range of effects on IRES activity. However, mutations within subdomain IIId hinder HCV IRES-mediated translation. In an attempt to explain these data, the dynamic behavior of the subdomain IIId was analyzed by means of molecular dynamics (MD) simulations. Despite the loss of function, MD simulations predicted that mutant G266A/G268U possesses a structure similar to the wt-RNA. This prediction was validated by analyzing the secondary structure of the isolated IIId RNAs by circular dichroism spectroscopy in the presence or absence of Mg2+ ions. These data strongly suggest that the primary sequence of subdomain IIId plays a key role in HCV IRES-mediated translation
    corecore