35 research outputs found

    Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains

    Get PDF
    Background: Approximately 30-40% of children <1 year of age are Clostridium difficile colonized, and may represent a reservoir for adult C. difficile infections (CDI). Risk factors for colonization with toxigenic versus non-toxigenic C. difficile strains and longitudinal acquisition dynamics in infants remain incompletely characterized. Methods: Predominantly healthy infants (≤2 years) were recruited in Oxfordshire, UK, and provided ≥1 fecal samples. Independent risk factors for toxigenic/non-toxigenic C. difficile colonization and acquisition were identified using multivariable regression. Infant C. difficile isolates were whole-genome sequenced to assay genetic diversity and prevalence of toxin-associated genes, and compared with sequenced strains from Oxfordshire CDI cases. Results: 338/365 enrolled infants provided 1332 fecal samples, representing 158 C. difficile colonization or carriage episodes (107[68%] toxigenic). Initial colonization was associated with age, and reduced with breastfeeding but increased with pet dogs. Acquisition was associated with older age, Caesarean delivery, and diarrhea. Breastfeeding and pre-existing C. difficile colonization reduced acquisition risk. Overall 13% of CDI C. difficile strains were genetically related to infant strains. 29(18%) infant C. difficile sequences were consistent with recent direct/indirect transmission to/from Oxfordshire CDI cases (≤2 single nucleotide variants [SNVs]); 79(50%) shared a common origin with an Oxfordshire CDI case within the last ~5 years (0-10 SNVs). The hypervirulent, epidemic ST1/ribotype 027 remained notably absent in infants in this large study, as did other lineages such as STs 10/44 (ribotype 015); the most common strain in infants was ST2 (ribotype 020/014)(22%). Conclusions: In predominantly healthy infants without significant healthcare exposure C. difficile colonization and acquisition reflect environmental exposures, with pet dogs identified as a novel risk factor. Genetic overlap between some infant strains and those isolated from CDI cases suggest common community reservoirs of these C. difficile lineages, contrasting with those lineages found only in CDI cases, and therefore more consistent with healthcare-associated spread

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    Wide dissemination of linezolid-resistant Staphylococcus epidermidis in Greece is associated with a linezolid-dependent ST22 clone

    No full text
    Objectives: Dependence on linezolid was recently described as significant growth acceleration of linezolidresistant Staphylococcus epidermidis (LRSE) isolates upon linezolid exposure. We investigated the possible contribution of linezolid dependence to LRSE dissemination in Greece. Methods: Linezolid resistance rates were estimated in six tertiary hospitals located throughout Greece between 2011 and 2013. Sixty-three randomly selected LRSE recovered in these hospitals during this period were studied. Growth curve analysis was conducted with and without linezolid. Clonality of the isolates was investigated by PFGE and MLST. Results: During the study period, the LRSE rate in the participating hospitals rose significantly from 6.9% to 9% (P=0.006); the increase was more prominent in ICUs (from 15.1% to 20.9%; P=0.005). Forty-seven (74.6%) of the 63 LRSE, derived from all study hospitals, clearly exhibited linezolid dependence, growing significantly faster in the presence of 16 and 32 mg/L linezolid. Of note, 61 (96.8%) LRSE exhibited a single macrorestriction pattern and belonged to ST22, which included all linezolid-dependent LRSE. The remaining two LRSE belonged to unique STs. Five of six linezolid-dependent isolates tested also exhibited linezolid dependence upon exposure to 8 mg/L linezolid. Interestingly, five of six ST22 linezolid-non-dependent isolates tested developed linezolid dependence when linezolid exposure preceded growth analysis. Conclusions: The rapid LRSE dissemination in Greek hospitals threatens linezolid activity. The observation that most LRSE belonged to ST22 and expressed dependence on linezolid clearly implies that the spread of linezolid resistance should have been driven by this trait, which provided the LRSE with a selective advantage under linezolid pressure. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved

    Wide dissemination of linezolid-resistant Staphylococcus epidermidis in Greece is associated with a linezolid-dependent ST22 clone

    No full text
    Objectives: Dependence on linezolid was recently described as significant growth acceleration of linezolid-resistant Staphylococcus epidermidis (LRSE) isolates upon linezolid exposure. We investigated the possible contribution of linezolid dependence to LRSE dissemination in Greece. Methods: Linezolid resistance rates were estimated in six tertiary hospitals located throughout Greece between 2011 and 2013. Sixty-three randomly selected LRSE recovered in these hospitals during this period were studied. Growth curve analysis was conducted with and without linezolid. Clonality of the isolates was investigated by PFGE and MLST. Results: During the study period, the LRSE rate in the participating hospitals rose significantly from 6.9% to 9% (P = 0.006); the increase was more prominent in ICUs (from 15.1% to 20.9%; P = 0.005). Forty-seven (74.6%) of the 63 LRSE, derived from all study hospitals, clearly exhibited linezolid dependence, growing significantly faster in the presence of 16 and 32 mg/L linezolid. Of note, 61 (96.8%) LRSE exhibited a single macrorestriction pattern and belonged to ST22, which included all linezolid-dependent LRSE. The remaining two LRSE belonged to unique STs. Five of six linezolid-dependent isolates tested also exhibited linezolid dependence upon exposure to 8 mg/L linezolid. Interestingly, five of six ST22 linezolid-non-dependent isolates tested developed linezolid dependence when linezolid exposure preceded growth analysis. Conclusions: The rapid LRSE dissemination in Greek hospitals threatens linezolid activity. The observation that most LRSE belonged to ST22 and expressed dependence on linezolid clearly implies that the spread of linezolid resistance should have been driven by this trait, which provided the LRSE with a selective advantage under linezolid pressure

    Point-prevalence survey of healthcare facility-onset healthcare-associated Clostridium difficile infection in Greek hospitals outside the intensive care unit: The C. DEFINE study.

    Get PDF
    The correlation of Clostridium difficile infection (CDI) with in-hospital morbidity is important in hospital settings where broad-spectrum antimicrobial agents are routinely used, such as in Greece. The C. DEFINE study aimed to assess point-prevalence of CDI in Greece during two study periods in 2013.There were two study periods consisting of a single day in March and another in October 2013. Stool samples from all patients hospitalized outside the ICU aged ≥18 years old with diarrhea on each day in 21 and 25 hospitals, respectively, were tested for CDI. Samples were tested for the presence of glutamate dehydrogenase antigen (GDH) and toxins A/B of C. difficile; samples positive for GDH and negative for toxins were further tested by culture and PCR for the presence of toxin genes. An analysis was performed to identify potential risk factors for CDI among patients with diarrhea.5,536 and 6,523 patients were screened during the first and second study periods, respectively. The respective point-prevalence of CDI in all patients was 5.6 and 3.9 per 10,000 patient bed-days whereas the proportion of CDI among patients with diarrhea was 17% and 14.3%. Logistic regression analysis revealed that solid tumor malignancy [odds ratio (OR) 2.69, 95% confidence interval (CI): 1.18-6.15, p = 0.019] and antimicrobial administration (OR 3.61, 95% CI: 1.03-12.76, p = 0.045) were independent risk factors for CDI development. Charlson's Comorbidity Index (CCI) >6 was also found as a risk factor of marginal statistical significance (OR 2.24, 95% CI: 0.98-5.10). Median time to CDI from hospital admission was shorter with the presence of solid tumor malignancy (3 vs 5 days; p = 0.002) and of CCI >6 (4 vs 6 days, p = 0.009).The point-prevalence of CDI in Greek hospitals was consistent among cases of diarrhea over a 6-month period. Major risk factors were antimicrobial use, solid tumor malignancy and a CCI score >6
    corecore