480 research outputs found
Small eta-N scattering lengths favour eta-d and eta-alpha states
Unstable states of the eta meson and the 3He nucleus predicted using the time
delay method were found to be in agreement with a recent claim of eta-mesic 3He
states made by the TAPS collaboration. Here, we extend this method to a
speculative study of the unstable states occurring in the eta-d and eta-4He
elastic scattering. The T-matrix for eta-4He scattering is evaluated within the
Finite Rank Approximation (FRA) of few body equations. For the evaluation of
time delay in the eta-d case, we use a parameterization of an existing Faddeev
calculation and compare the results with those obtained from FRA. With an eta-N
scattering length, fm, we find an eta-d unstable
bound state around -16 MeV, within the Faddeev calculation. A similar state
within the FRA is found for a low value of , namely, fm. The existence of an eta-4He unstable bound state close to
threshold is hinted by fm, but is ruled out by
large scattering lengths.Comment: 21 pages, LaTex, 7 Figure
Breit Equation with Form Factors in the Hydrogen Atom
The Breit equation with two electromagnetic form-factors is studied to obtain
a potential with finite size corrections. This potential with proton structure
effects includes apart from the standard Coulomb term, the Darwin term,
retarded potentials, spin-spin and spin-orbit interactions corresponding to the
fine and hyperfine structures in hydrogen atom. Analytical expressions for the
hyperfine potential with form factors and the subsequent energy levels
including the proton structure corrections are given using the dipole form of
the form factors. Numerical results are presented for the finite size
corrections in the 1S and 2S hyperfine splittings in the hydrogen atom, the
Sternheim observable and the 2S and 2P hyperfine splittings in muonic
hydrogen. Finally, a comparison with some other existing methods in literature
is presented.Comment: 24 pages, Latex, extended version, title change
The weak strangeness production reaction in a one-boson-exchange model
The weak production of Lambdas in nucleon-nucleon scattering is studied in a
meson-exchange framework. The weak transition operator for the reaction is identical to a previously developed weak
strangeness-changing transition potential that describes the
nonmesonic decay of hypernuclei. The initial and final state
interaction has been included by using realistic baryon-baryon forces that
describe the available elastic scattering data. The total and differential
cross sections as well as the parity-violating asymmetry are studied for the
reaction . These observables are found to be sensitive to the
choice of the strong interaction potential and the structure of the weak
transition potential.Comment: 25 pages, 8 postscript figures. Submitted to Phys. Rev.
Ion-lithium collision dynamics studied with an in-ring MOTReMi
We present a novel experimental tool allowing for kinematically complete
studies of break-up processes of laser-cooled atoms. This apparatus, the
'MOTReMi', is a combination of a magneto-optical trap (MOT) and a Reaction
Microscope (ReMi). Operated in an ion-storage ring, the new setup enables to
study the dynamics in swift ion-atom collisions on an unprecedented level of
precision and detail. In first experiments on collisions with 1.5 MeV/amu
O-Li the pure ionization of the valence electron as well as
ionization-excitation of the lithium target has been investigated
Asymmetry to symmetry transition of Fano line-shape: Analytical derivation
An analytical derivation of Fano line-shape asymmetry ratio has been
presented here for a general case. It is shown that Fano line-shape becomes
less asymmetric as \q is increased and finally becomes completely symmetric in
the limiting condition of q equal to infinity. Asymmetry ratios of Fano
line-shapes have been calculated and are found to be in good consonance with
the reported expressions for asymmetry ratio as a function of Fano parameter.
Application of this derivation is also mentioned for explanation of asymmetry
to symmetry transition of Fano line-shape in quantum confined silicon
nanostructures.Comment: 3 figures, Latex files, Theoretica
History of exotic Meson (4-quark) and Baryon (5-quark) States
I briefly review the history of exotic meson (4-quark) and baryon (5-quark)
states, which is rooted in the formalism of Regge pole and duality. There are
robust model-independent predictions for the exchange of 4-quark (Baryonium)
Regge trajectories in several processes, which are strongly supported by
experiment. On the other hand the predictions for the spectroscopy of 4-quark
resonances are based on specific QCD inspired models, with some experimental
support. The corresponding predictions for the recently discovered exotic
baryon (Pentaquark) state are briefly discussed.Comment: 14 pages Latex including 4 eps figures, final version to appear as a
topical review in J. Phys.
Coherent pion production in neutrino nucleus collision in the 1 GeV region
We calculate cross sections for coherent pion production in nuclei induced by
neutrinos and antineutrinos of the electron and muon type. The analogies and
differences between this process and the related ones of coherent pion
production induced by photons, or the (p,n) and reactions are
discussed. The process is one of the several ones occurring for intermediate
energy neutrinos, to be considered when detecting atmospheric neutrinos. For
this purpose the results shown here can be easily extrapolated to other
energies and other nuclei.Comment: 13 pages, LaTex, 8 post-script figures available at
[email protected]
Z^* Resonances: Phenomenology and Models
We explore the phenomenology of, and models for, the Z^* resonances, the
lowest of which is now well established, and called the Theta. We provide an
overview of three models which have been proposed to explain its existence
and/or its small width, and point out other relevant predictions, and potential
problems, for each. The relation to what is known about KN scattering,
including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form
Quasi-Elastic Scattering in the Inclusive (He, t) Reaction
The triton energy spectra of the charge-exchange C(He,t) reaction
at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out
region. Considering that this region is mainly populated by the charge-exchange
of a proton in He with a neutron in the target nucleus and the final proton
going in the continuum, the cross-sections are written in the distorted-wave
impulse approximation. The t-matrix for the elementary exchange process is
constructed in the DWBA, using one pion- plus rho-exchange potential for the
spin-isospin nucleon- nucleon potential. This t-matrix reproduces the
experimental data on the elementary pn np process. The calculated
cross-sections for the C(He,t) reaction at to triton
emission angle are compared with the corresponding experimental data, and are
found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at
[email protected], submitted to Phy.Rev.
- …