114 research outputs found

    Renormalization group flows in one-dimensional lattice models: impurity scaling, umklapp scattering and the orthogonality catastrophe

    Full text link
    We show that to understand the orthogonality catastrophe in the half-filled lattice model of spinless fermions with repulsive nearest neighbor interaction and a local impurity in its Luttinger liquid phase one has to take into account (i) the impurity scaling, (ii) unusual finite size LL corrections of the form ln(L)/L\ln(L)/L, as well as (iii) the renormalization group flow of the umklapp scattering. The latter defines a length scale LuL_u which becomes exceedingly large the closer the system is to its transition into the charge-density wave phase. Beyond this transition umklapp scattering is relevant in the renormalization group sense. Field theory can only be employed for length scales larger than LuL_u. For small to intermediate two-particle interactions, for which the regime L>LuL > L_u can be accessed, and taking into account the finite size corrections resulting from (i) and (ii) we provide strong evidence that the impurity backscattering contribution to the orthogonality exponent is asymptotically given by 1/161/16. While further increasing the two-particle interaction leads to a faster renormalization group flow of the impurity towards the cut chain fixed point, the increased bare amplitude of the umklapp scattering renders it virtually impossible to confirm the expected asymptotic value of 1/161/16 given the accessible system sizes. We employ the density matrix renormalization group.Comment: 12 pages, 9 figure

    Rigorous Formulation of Duality in Gravitational Theories

    Full text link
    In this paper we evince a rigorous formulation of duality in gravitational theories where an Einstein like equation is valid, by providing the conditions under which the Hodge duals (with respect to the metric tensor g) of T^a and R_b^a may be considered as the torsion and curvature 2-forms associated with a connection D', part of a Riemann-Cartan structure (M,g',D'), in the cases g = g' and g does not equal g', once T^a and R_b^a are the torsion and curvature 2-forms associated with a connection D part of a Riemann-Cartan structure (M,g,D). A new form for the Einstein equation involving the dual of the Riemann tensor of D is also provided, and the result is compared with others appearing in the literature.Comment: 15 page

    The submarine Azores Plateau : Evidence for a waning mantle plume?

    Get PDF
    The submarine Azores Plateau in the Central Northern Atlantic has generally been considered to represent a large igneous plateau formed some 10 Ma by widespread volcanism, however a lack of age progression amongst the younger submarine and subaerial volcanism, an irregular distribution of platform-related magmas east and west of the Mid-Atlantic Ridge, a strong tectonic stress regime, and a lack of abundant tholeiitic compositions that reflect initial, high degrees of melting is not easily explainable in the framework of a classic, long-lived mantle plume model. Here, we present new bathymetric and seismic data from the submarine Azores Plateau obtained during cruises M113/1 and M128 with the German R/V Meteor. Our new data combined with prior geochemical and petrological studies indicate that the majority of the western Azores Plateau may indeed have formed during the arrival of a short-lived mantle melting anomaly at 10 Ma. However, our new data also indicate that volcanismPeer reviewe

    Cosmological solutions from fake N=2 EYM supergravity

    Get PDF
    We characterise the (fake) supersymmetric solutions of Wick-rotated N=2 d=4 gauged supergravity coupled to non-Abelian vector multiplets. In the time-like case we obtain generalisations of Kastor & Traschen's cosmological black holes: they have a specific time-dependence and the base-space must be 3-dimensional hyperCR/Gauduchon-Tod space. In the null-case, we find that the metric has a holonomy contained in Sim(2), give a general characterisation of the solutions, and give some examples. Finally, we point out that in some cases the solutions we found are non-BPS solutions to N=2 d=4 supergravity coupled to vector multiplets.Comment: 30 pages. Comments and references added, typos correcte

    Origin of high Mg and SO 4 fluids in sediments of the Terceira Rift, Azores – indications for caminite dissolution in a waning hydrothermal system

    Get PDF
    During R/V Meteor cruise 141/1, pore fluids of near surface sediments were investigated to find indications for hydrothermal activity in the Terceira Rift (TR), a hyper‐slow spreading center in the Central North Atlantic Ocean. To date, submarine hydrothermal fluid venting in the TR has only been reported for the D. João de Castro seamount, which presently seems to be inactive. Pore fluids sampled close to a volcanic cone at 2800 m water depth show an anomalous composition with Mg, SO4, and total alkalinity (TA) concentrations significantly higher than seawater and a nearby reference core. The most straightforward way of interpreting these deviations is the dissolution of the hydrothermally formed mineral caminite (MgSO4 0.25Mg(OH)2 0.2H2O). This interpretation is corroborated by a thorough investigation of fluid isotope systems (δ26Mg, δ30Si, δ34S, δ44/42Ca, and 87Sr/86Sr). Caminite is known from mineral assemblages with anhydrite, and forms in hydrothermal recharge zones only under specific conditions such as high fluid temperatures and in altered oceanic crust, which are conditions generally met at the TR. We hypothesize that caminite was formed during hydrothermal activity and is now dissolving during the waning state of the hydrothermal system, so that caminite mineralization is shifted out of its stability zone. Ongoing fluid circulation through the basement is transporting the geochemical signal via slow advection towards the seafloor

    Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers.

    Get PDF
    Galloyl catechins, in particular (-)-epicatechin gallate (ECg), have the capacity to abrogate β-lactam resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA); they also prevent biofilm formation, reduce the secretion of a large proportion of the exoproteome and induce profound changes to cell morphology. Current evidence suggests that these reversible phenotypic traits result from their intercalation into the bacterial cytoplasmic membrane. We have endeavoured to potentiate the capacity of ECg to modify the MRSA phenotype by stepwise removal of hydroxyl groups from the B-ring pharmacophore and the A:C fused ring system of the naturally occurring molecule. ECg binds rapidly to the membrane, inducing up-regulation of genes responsible for protection against cell wall stress and maintenance of membrane integrity and function. Studies with artificial membranes modelled on the lipid composition of the staphylococcal bilayer indicated that ECg adopts a position deep within the lipid palisade, eliciting major alterations in the thermotropic behaviour of the bilayer. The non-galloylated homolog (-)-epicatechin enhanced ECg-mediated effects by facilitating entry of ECg molecules into the membrane. ECg analogs with unnatural B-ring hydroxylation patterns induced higher levels of gene expression and more profound changes to MRSA membrane fluidity than ECg but adopted a more superficial location within the bilayer. ECg possessed a high affinity for the positively charged staphylococcal membrane and induced changes to the biophysical properties of the bilayer that are likely to account for its capacity to disperse the cell wall biosynthetic machinery responsible for β-lactam resistance. The ability to enhance these properties by chemical modification of ECg raises the possibility that more potent analogs could be developed for clinical evaluation

    The 3' 5' exonucleases.

    Full text link
    Over the past few years, several new 3' 5' exonucleases have been identified. In vitro studies of these enzymes have uncovered much about their potential functions in vivo, and certain organisms with a defect in 3' 5' exonucleases have an increased susceptibility to cancer, especially under conditions of stress. Here, we look at not only the newly discovered enzymes, but also at the roles of other 3' 5' exonucleases in the quality control of DNA synthesis, where they act as proofreading exonucleases for DNA polymerases during DNA replication, repair and recombination

    Extreme intensity of fluid-rock interaction during extensive intraplate volcanism

    Get PDF
    The initial formation and temporal evolution of large igneous plateaus and the extent to which these large enigmatic igneous features impact on their immediate and distant ecological surrounding remains a matter of active research. The compositional variability in large igneous provinces has mainly been attributed to changes in the melting regime and shallow crustal processes and commonly ranges from depleted tholeiitic basaltic to enriched alkaline lavas. Large igneous provinces erupted in the submarine environment however, may also experience intense hydrothermal alteration during their formation resulting from an increased exchange between seawater and the erupting lavas during their eruptive history. The submarine Azores Plateau in the Central Northern Atlantic has generally been treated to represent such large igneous province formed since similar to 10 Ma by widespread volcanism and the unique tectonic regime which results in large fault systems exposing the erupted lavas. Here, we present new seismic, petrological and major element, trace element and isotope geochemical data from a similar to 1000 m stratigraphic section of submarine lavas exposed at the western Princessa Alice bank. The 22 samples recovered from the near-vertical rift wall provide evidence for intense water-rock exchange not observed anywhere in oceanic crust sampled to date. Fluid-immobile incompatible trace elements show that the samples formed from higher degrees of partial melting of a mantle source that is less enriched than the source that gives rise to the islands today. The extents of melting today are very small, implying a change in melting regime since initial formation of the Princessa Alice Plateau basalts that correspond to a melting anomaly in the Azores. Our observations indicate that the extreme levels of alteration may result from a combination of intensified magmatic activity during initial formation of the Azores Plateau and the tectonic regime providing pathways for the fluids. Our results impact on the interpretation of shallow level crustal magmatic processes, in which the contribution of crustal sources to the ascending melt may be different to what had previously been suggested. We propose that hydrothermal alteration during submarine igneous plateau forming events can drastically change the compositions of the igneous crust. The associated elemental and isotopic exchange between the oceanic crust and hydrosphere may substantially change the chemical fluxes between oceans and crust during the emplacement of oceanic plateaus. (C) 2019 Elsevier Ltd. All rights reserved.Peer reviewe
    corecore