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Instituto de F́ısica Teórica UAM/CSIC, Facultad de Ciencias C-XVI
C.U. Cantoblanco, E-28049 Madrid, Spain

abstract

We characterise the (fake) supersymmetric solutions of Wick-rotated N = 2 d = 4 gauged

supergravity coupled to non-Abelian vector multiplets. In the time-like case we obtain

generalisations of Kastor & Traschen’s cosmological black holes: they have a specific time-

dependence and the base-space must be 3-dimensional hyperCR/Gauduchon-Tod space.

In the null-case, we find that the metric has a holonomy contained in Sim(2), give a general

characterisation of the solutions, and give some examples. Finally, we point out that in

some cases the solutions we found are non-BPS solutions to N = 2 d = 4 supergravity

coupled to vector multiplets.

In 1992 Kastor & Traschen [1] created a cosmological multi-black hole solution to Einstein-
Maxwell-De Sitter gravity by observing that the extreme Reissner-Nordstrom-De Sitter black
hole solution written in spherical coordinates could be transformed to the time-dependent
conforma-static form

ds2 = Ω−2dτ2 − Ω2 d~x2
(3) with Ω = Hτ +

m

r
, (1)

where 3H2 is the cosmological constant and we introduced the further coordinate transforma-
tion Hτ = eHt; as the r-dependent part of Ω is a spherically symmetric harmonic function,
the multi-bh solutions can be created by changing it to a general harmonic function.

Seeing the similarity of the above solution and the supersymmetric solutions to minimal
N = 2 d = 4 supergravity [2], whose bosonic part is just EM-theory, Kastor & Traschen
showed [3] that their multi-bh solution solved the spinorial equations1

∇aǫI = − iH
2 γa εIJǫJ + H AaǫI + iF+

abγ
bεIJǫJ . (2)

This fermionic rule can be derived from the supersymmetry variations of minimal gauged
N = 2 d = 4 supergravity, which has an anti-De Sitter type cosmological constant Λ = 3g2,
by Wick-rotating g → iH. As eq. (2) looks like a Killing Spinor Equation but is not due to
supersymmetry, we will refer to equations like it as fake-Killing Spinor Equations (fKSEs) [6].

The KT solutions were subsequently generalised to higher dimensions by London in ref. [7],
who also showed that his solutions solved a suitable fKSE, and generalised to spinning so-

1 In this article we will be following the conventions of ref. [4], which in its turn are adapted from those of
ref. [5]. Specifically this means that the metric is mostly-minus, the γ-matrices are purely imaginary and the
spinors are chiral, with γ5ǫ

I = ǫI and γ5ǫI = −ǫI . As γ5 = −iγ0123 is purely imaginary, the above chirality
assignment is compatible with the convention of raising and lowering I-indices by complex conjugation.
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lutions in a stringy theory2 by Shiromizu [8]. In ref. [9], Behrndt & Cvetič generalised the
KT-solution to asymptotically DS solutions to 5- and 4-dimensional supergravities coupled
to vector multiplets by observing the following substitution rule: as one can see form the
expression for Ω in eq. (1), the difference between the cosmological solution and the usual
supersymmetric solutions is nothing but the linear τ -dependence. As harmonic functions
appear quite natural in supersymmetric solutions, the substitution rule is to add to these
harmonic functions a piece linear in the time-coordinate. Furthermore, Behrndt & Cvetič
showed that their solutions solved fKSEs that could be obtained from the KSEs of gauged
supergravity coupled to vector-multiplets, by Wick-rotating the coupling constant, pointing
out that this is equivalent to considering an R-gauged symmetry. Indeed, the construction
of e.g. gauged N = 2 d = 4 supergravity coupled to vector-multiplets calls for the inclusion
of an U(1) Fayet-Iliopoulos term, which as far as the Killing spinor is concerned means that
it is gauged (see e.g. [5]), proportional to the coupling constant. Wick-rotating the coupling
constant, then, is equivalent to Wick-rotating the gauge group, which becomes R.

It was recently realised by Grover et al. [10], that the techniques used to classify super-
symmetric solutions to supergravity theories, could be used to construct solutions to theories
admitting fKSEs; they applied the techniques of ref. [11] to the classification of solutions to
the time-like case of minimal ‘De Sitter N = 1 d = 5 supergravity’, which can be obtained by
Wick-rotation from minimal gauged N = 1 d = 5 supergravity. Of special interest in these
classification is the geometry of the 4-dimensional base-space, which in the DS case turns out
to be hyperKähler-Torsion, whereas it is hyper-Kähler in the ungauged sugra [12] and Kähler
in the gauged sugra [13].

In this article we will extend the results of K&T [1] and B&C [9] by considering solutions
to Wick’ed N = 2 d = 4 supergravity coupled to non-Abelian vector multiplets, by which
we mean that we allow for gaugings of the isometries of the scalar manifold (see e.g. [5]).
As indicated above, this theory can be obtained from gauged N = 2 d = 4 supergravity
coupled to non-Abelian vector-multiplets by Wick-rotation, not of the coupling constant as
we are allowing for non-Abelian couplings, but of the Fayet-Iliopoulos term responsible for
gauging the R-symmetry; we shall refer to this theory as fake N = 2 Einstein-Yang-Mills.
For understandable reasons, the N = 2 d = 4 supergravity theories have attracted quite some
interest in the last decades, and the theories for which the supersymmetric solutions have
been fully classified/characterised are the minimal theory [2], the minimal theory coupled
to vector- and hyper-multiplets [14, 15], the minimal theory coupled to non-Abelian vector-
multiplets [4], minimal gauged theory [16], and recently the minimal gauged theory coupled
to vector-multiplets [17].

Wick rotation of the coupling constant in gauged supergravity was also considered in
ref. [18] in order to find a supergravity basis for the Domain Wall/Cosmology correspondence
[19]. As ref. [18] focusses on proper supersymmetry, Wick rotation of the coupling constant
has to be necessarily accompanied by a change of reality conditions on the spinors and,
furthermore, a Wick rotation of the vector field: the result is a true De Sitter supergravity with
its characteristic ghost-like vector field, i.e. the kinetic term for the vector field has the wrong
sign (see e.g. [20]). In our construction, however, we do not impose proper supersymmetry
and do not change the reality conditions of the spinors: this avoids the problem of having

2 The model used by Shiromizu can be seen as a truncation of a model with prepotential F = −i/2X 0
X

1

and C1 = 0, the meaning of which will be explained in section (1). His solutions can be obtained from the
results in section (2).
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ghost-like vector fields, implying that in the limit of vanishing FI-term we recover an ordinary
supergravity theory.

The outline of this paper is the following: in section (1) we shall set up the fake-Killing
spinors equations we are going to solve and some information about special geometry and
the gauging of isometries in special geometries, needed to understand the set up, are given
in appendix (A). In that section we will see that, as we are Wick-rotating the FI-term, the
relations between the equations of motion one can derive from the integrability equation, are
similar to the ones obtained in the supersymmetric case and that the implications as far as
the checking of equations of motion are concerned are identical: this was to be expected as
we are not changing the characteristics of the Killing spinors. Similar to the supersymmetric
classifications, there are two cases to be considered, namely the ones depending on the norm
of the vector one constructs as a bilinear of the fake-Killing spinors, and the time-like case,
i.e. when the norm doesn’t vanish, will be treated in section (2). In section (3) we will
have a go at the null case, i.e. when the norm of the vector vanishes identically. In that
section, we shall ignore the possible non-Abelian couplings and furthermore will not obtain a
complete characterisation; in stead we shall see that the solutions have infinitesimal holonomy
contained in sim(2) and discuss the general features such a solution should have. This will be
illustrated by two solutions, namely the Nariai cosmos in the minimal theory in section (3.1)
and in section (3.2) a general class of solutions with holomorphic scalars which can be seen
as a, back-reacted, intersection of a cosmic string with a Robinson-Bertotti-Nariai solution.

The reader might feel that the generic theories that can be treated in our setting are rather
esoteric as their connection with supergravity theories or EYM-Λ theories is rather weak: in
section (4) we shall use the well-known fact that in gauged N = 2 d = 4 supergravity theories
there are choices for the FI-terms for which the theory under consideration equals that of
the bosonic part of an ungauged supergravity [21]. This in fact means that in those cases,
our fake-supersymmetric solutions are nothing more than non-BPS solutions to an ordinary
ungauged supergravity. The easiest model in which one can see this happen is the model
which can be obtained by dimensionally reducing minimal N = 1 d = 5 supergravity, and
we shall discuss some simple solutions to this model and also their uplift to five dimensions.
Finally, in section (5) we shall give our conclusions and a small outlook for related work in
higher dimensions, and appendices (B) and (C) contains information about the normalisation
of the bilinears and the curvatures for the null-case.

1 Fake N = 2 Einstein-Yang-Mills

As was said in the introduction, the set-up that we want to consider can be obtained from
ordinary N = 2 d = 4 gauged sugra coupled to vector multiples but no hyper-multiplets,
by Wick-rotating the Fayet-Iliopoulos term: said differently, we Wick-rotate the constant tri-
holomorphic map P

x
Λ → iCΛδx

2 , where CΛ are real constant. In supersymmetry the FY-term
would gauge an U(1) in the hyper-multiplets’ SU(2), and the effect of the Wick-rotation is
that we are gauging an R-symmetry through the effective connection CΛAΛ [9].

The presence of a FI-term is compatible with the gauging of non-Abelian isometries of
the scalar manifold, as long as the action of the gauge group commutes with the FI-term
(see e.g. [5]); taking the gauge algebra to have structure constants fΛΣ

Γ, then implies that
we must impose the constraint fΛΣ

ΩCΩ = 0. One result of the introduction of the CΛ is
that the dimension of the possible gauge-algebra is not n̄ = n + 1, n being the number of
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vector multiplets, but rather n, as ‘one‘ vector field is already used as the connection for the
R-symmetry.

The gauging of isometries implies that field-strengths of the physical fields are given by

DZi ≡ dZi + gAΛ
Λ Ki , FΛ ≡ dAΛ + g

2 fΣΓ
Λ AΣ ∧AΓ . (3)

where Ki
Λ is the holomorphic part of the Killing vector KΛ (see appendix (A) for the minimal

information needed or refs. [5, 4] for a fuller account). One implication of the above definition
is that CΛFΛ = d

[

CΛAΛ
]

, so that the linear combination CΛAΛ is indeed an Abelian vector-
field.

As mentioned, we are introducing an R-connection which together with the existent
Kähler/U(1)-symmetry due to the vector coupling means that we should define the covariant
derivative on the F-killing spinors as3

DaǫI = ∇aǫI + i
2QaǫI + ig

2 AΛ
a [PΛ + iCΛ] ǫI

≡ DaǫI − g
2 CΛAΛ

a ǫI , (4)

where PΛ is the momentum map corresponding to an isometry KΛ of the special geometry.
Using the above definitions we can write the fake Killing Spinor Equations as

DaǫI = −εIJ T +
ab γb ǫJ − ig

4 CΛLΛ γa εIJǫJ , (5)

Daǫ
I = εIJ T +

abγ
b ǫJ − ig

4 CΛLΛ
γa εIJǫJ , (6)

i/DZi ǫI = −εIJ /G
i+

ǫJ − Wi εIJǫJ , (7)

i/DZ
ı̄
ǫI = −εIJ /G

ı̄−
ǫJ − W

ı̄
εIJǫJ , (8)

where for clarity we have given also the rules for Daǫ
I and /DZ

ı̄ǫI even though they can be
obtained by complex conjugation from the other 2 rules. Furthermore, we introduced the
abbreviation

Wi = − ig
2 f̄ iΛ [PΛ + iCΛ] , Wı̄ = Wi , (9)

and we used the standard N = 2 d = 4 sugra definitions [5]

T + ≡ 2iLΛ FΛ+ , Gi+ ≡ −f̄ i
Λ FΛ + . (10)

The integrability conditions for the above system of equations can easily be calculated
and give rise to

Bab γbǫI = −2i LΛ
[

/BΛ − NΛΣ/BΣ
]

εIJγaǫ
J , (11)

where we defined not only the Bianchi identity as ⋆BΛ = DFΛ(= 0) but also

Bab = Rab + 2Gi̄D(aZ
iDb)Z

̄
+ 4Im (N )ΛΣ

[

FΛ
acF

Σ
b

c − 1
4ηabF

Λ
cdF

Σcd
]

− 1
2ηab V ,(12)

⋆BΛ = D
[

NΛΣ FΣ− +NΛΣ FΣ+
]

− g
2Re

(

KΛı̄ ⋆ DZ
ı̄
)

≡ DFΛ − g
2Re

(

KΛı̄ ⋆ DZ
ı̄
)

, (13)

V = g2

2

[

3CΛCΣLΛLΣ
+ fΛ

i f̄ iΣ (P + iC)Λ (P + iC)Σ

]

. (14)

3 In the notation that we will follow throughout this article, D will be the total connection, whereas we
will reserve D for the connection without the R-part and D for the Kähler-connection, i.e. the connection
appearing in ungauged supergravity.

4



The potential that follows from the integrability condition is not real, and imposing it to be
real implies that we must satisfy the constraint

0 = Im (N )−1|ΛΣ
PΛ CΣ , (15)

which is a gauge-invariant statement. For our choice of possible non-Abelian gaugings, this
constraint is satisfied identically: by contracting the last equation in eq. (163) with fΣ

i and
using identities (138) and (158) one can obtain the identity

Im (N )−1|ΛΣ
PΣ = 4i LΣLΩ

fΣΩ
Λ , (16)

which upon contracting with CΛ and using its G-invariance gives the desired result. Therefore
the potential V reads

V = g2

2

[

3
∣

∣CΛLΛ
∣

∣

2
+ fΛ

i f̄ iΣ ( PΛPΣ − CΛCΣ)
]

, (17)

= g2

2

[

4
∣

∣CΛLΛ
∣

∣

2
+ 1

2Im (N )−1|ΛΣ ( CΛCΣ − PΛPΣ)
]

, (18)

which is similar to the supersymmetric result in [5], upon Wick rotating the Fayet-Iliopoulos
term. Likewise, the above equations of motion can then be obtained from the action

∫

4

√
g

[

R + 2Gi̄DaZ
iDaZ

̄
+ 2Im (N )ΛΣ FΛ

abF
Σab − 2Re (N )ΛΣ FΛ

ab ⋆ FΣab − V

]

, (19)

which as stated in the introduction has correctly normalised kinetic terms.
In sugra the integrability condition for the scalars relates the scalar e.o.m. with the

Maxwell e.o.m.s, and the same happens here: a straightforward calculation results in

BiǫI = −2i f̄ iΛ
[

/BΛ − NΛΣ/BΣ
]

εIJǫJ , (20)

where we have introduced the equation of motion for the scalars Zi as

Bi = �Zi − i∂iNΛΣFΛ+
ab FΣ+ ab + i∂iNΛΣFΛ−

ab FΣ− ab + 1
2∂iV . (21)

In conclusion, the integrability conditions for the equations (5–8) give relations between the
equations of motion, which, forgetting about the changes in the form of the B-tensors, are
exactly the same as found in supersymmetry, which is hardly surprising. The implication
of the relations (11) and (20) is then also the same [12, 22], namely that the independent
number of equations of motion one has to check in order to be sure that a given solution to
eqs. (5–8) is also a solution to the equations of motion is greatly reduced.4 The minimal set of
equations of motion one has to check depends on the norm of the vector bilinear Va = iǫIγaǫI :
if the norm VaV

a is positive, referred to as the time-like case, we only need to solve the time-
like direction of the Bianchi identity, i.e. ıV ⋆ BΛ = 0 and the Maxwell/YM equations, i.e.
ıV ⋆ BΛ = 0. This case will be considered in section (2).

If the norm of the bilinear is null, i.e. VaV
a = 0, then a convenient set of e.o.m.s is given

by NaN bBab = 0, NaBΛa = 0 and NaBΛ
a , where N is a vector normalised by V aNa = 1: this

case will be considered in section (3).

4 As we are using the same conventions as ref. [15], we can copy their arguments as they stand.
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2 Analysis of the Time-like case

In this section we shall consider the time-like case and the strategy to be followed is the usual
one: we analyse the differential constraints on the bilinears constructed out of the spinors ǫI

defined in appendix (B) coming from the fKSEs (5–8), trying to solve these constraints as
general as possible in as little unknowns as possible. After the constraints have been solved,
we shall, following the comments made above, impose the Bianchi identity and the gauge-field
equations of motion and to see what conditions they impose. After these steps we will be
left with a minimal set of functions, structures and conditions they have to satisfy in order
to construct fake-supersymmetric solutions: for the solutions to be constructed in this case,
the algorithm will be outlined in section (2.1).

Let us start by discussing the differential constraints on the bilinears: using eq. (5) and
the definitions of the bilinears in appendix (B), we can calculate

DX = g
4 CΛLΛ V + i ıV T + , (22)

DaVb = g|X|2 CΛRΛ ηab + 4Im
(

X T +
ab

)

, (23)

DV x = g
2CΛRΛ V ∧ V x + g

2CΛIΛ ⋆ [V ∧ V x] , (24)

where following ref. [15] we have introduced the real symplectic sections of Kähler weight
zero,

R = Re (V/X) , I = Im(V/X) −→ 1

2|X|2 = 〈R|I〉 . (25)

In the ungauged theory, as will also be the case here, the 2n̄ real functions I play a funda-
mental rôle in the construction of BPS solutions and the 2n̄ real functions R depend on I:
finding, given a Special Geometric model, the explicit I-dependence of R is known as the
stabilisation equation, and for many models solutions to it are known.

A first difference with supersymmetric case lies in the character of the bilinear V : in that
case it is always a Killing vector, which as one can see from eq. (23) will not be the case here.
We can still use it to introduce a time-like coordinate τ by choosing an adapted coordinate
system through V a∂a =

√
2∂τ , but now the components of the metric will depend explicitly

on τ , as was to be expected from for instance the Kastor & Traschen solution [3].
As the V x contain the information about the metric on the base-space, it is important to

deduce its behaviour under translations along V ; in order to investigate we calculate

£V V x = ıV dV x + d (ıV V x) = gCΛıV AΛ V x + 2g|X|2CΛRΛ V x . (26)

This implies that by choosing the gauge-fixing

ıV AΛ = −2|X|2 RΛ , (27)

we find that £V V x = 0. We would like to point out that the above gauge-fixing is the actual
result one obtains when considering time-like supersymmetric solutions in N = 2 d = 4
supergravity theories [15, 4].

The above result has some nice implications, the first of which is derived by contracting
eq. (23) with V aV b, namely

〈∇VR|I〉+ 〈R|∇V I〉 = ∇V
1

2|X|2 = gCΛ RΛ . (28)

6



We can rewrite the above equation to a nicer form by observing that

〈V/X|d (V/X)〉 = X−2 〈V|DV〉 − X−3DX 〈V|V〉 = 0

= 〈R|dR〉 − 〈I|dI〉 + i〈R|dI〉 + i〈I|dR〉 , (29)

which seeing the reality properties of the above expression implies5

〈 dR | I 〉 = 〈 R | dI 〉 , (30)

〈 R | dR 〉 = 〈 I | dI 〉 . (31)

If we then introduce the real symplectic section CT = (0, CΛ), we can rewrite eq. (28) in the
simple and suggestive form

0 = 〈 R | ∇V I + g
2C 〉 . (32)

The above equation could also have been obtained from the contraction of eq. (22) with V ,
i.e.

1
X

DV
1
X = −g〈R|C〉 + ig〈I|C〉 , (33)

and taking its real part. By taking the imaginary part and using the identity

Im
(

1
X

D 1
X

)

= −2〈I|DI〉 , (34)

we find that apart form eq. (32), we also must have

0 = 〈 I | ∇V I + g
2C 〉 . (35)

By now, there are strong hints that the derivative of the symplectic section I in the
direction V should be constant and, in fact, the information needed to close the case is
hidden in eqs. (7) and (8). From the contraction of (7) with ǭKγaεKI we find

2X DZi = 4 ıV Gi+ − Wi V , (36)

which upon contraction with V leads to

DV Zi = −2 X Wi . (37)

Using the gauge-fixing (27), the identity f̄ΛiPΛ = iLΛ
Ki

Λ and the fact that for our choice of
possible non-Abelian gauge groups we have LΛKi

Λ = 0, we see that the above equation is
converted to

∇V Zi = −g X f̄Λi CΛ . (38)

Using then the special geometry identity 〈Ui|U ̄〉 = iGi̄, we can rewrite the above equation to

〈∇V I + gC | U ̄〉 = i〈 ∇VR|U ̄〉 , (39)

which can be manipulated by using the special geometry properties and a renewed call to
eq. (37) to give

〈 ∇V I + g
2C | U ̄〉 = 0 . (40)

5 These expressions were derived in ref. [23] starting from a prepotential and using the obvious homogeneity
of the symplectic section R. The derivation presented here is far less involved and also holds in situations
where no prepotential exists.
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The above equation plus eqs. (32) and (35) together with the completeness relation from
special geometry, eq. (133), then implies

∇V I = − g
2 C , (41)

which implies that the τ -dependence of the functions I is at most linear, and in fact only half
of them, namely the IΛ.

At this point it is necessary to introduce a complete coordinate system (τ, ym), which we
will take to be adapted to V and compatible with the Fierz identities in appendix (B), i.e.

V a∂a =
√

2∂τ , V = 2
√

2|X|2 (dτ + ω)

V xa∂a = −2
√

2|X|2V xm (∂m − ωm∂τ ) , V x =
√

2 V x
m dym ,

(42)

where ω = ωmdym is a possibly τ -dependent 1-form and we introduced V xm by V xmV y
m = δxy;

as the V x
m act as a Dreibein on a Riemannian space, the x-indices can be raised and lowered

with δxy, so that we won’t distinguish between co- and contravariant x-indices.
Putting the Vierbein together with the Fierz identity (168) we find that the metric is

takes on the conforma-stationary form

ds2 = 2|X|2 (dτ + ω)2 − 1
2|X|2 hmndymdyn , (43)

where hmn = V x
mV x

n is the metric on the 3-dimensional base-space.
W.r.t. our choice of coordinates we have that £V V x = 0 equals ∂τV

x
m = 0; the V x are

of course also constrained by eq. (24), which in the chosen coordinate system and using the
decomposition

AΛ = −1
2RΛ V + ÃΛ

m dym ≡ −1
2RΛ V + ÃΛ −→ FΛ = −1

2D
[

RΛV
]

+ F̃Λ , (44)

reads
dV x = gCΛ ÃΛ ∧ V x + g

4 CΛIΛ εxyz V y ∧ V z . (45)

A first remark to be made is that for consistency we must have CΛ∂τ ÃΛ
x = 0. Further, we

could use the residual gauge freedom CΛÃΛ → CΛÃΛ + dφ(y), V x → egφV x to take CΛIΛ to
be constant, a possibility we will not use. And lastly, the integrability condition d2V x = 0
implies

0 = g
4

[

εxyz CΛF̃Λ
yz +

√
2 V m

x D̃m CΛIΛ
]

, (46)

where we have introduced F̃Λ
xy ≡ V m

x V n
y F̃Λ

mn and

D̃mI = ∂mI + gCΛÃΛ
m I + gÃΛ

m SΛI ; D̃x ≡ V m
x D̃m . (47)

The system (45) was analysed by Gauduchon & Tod in ref. [24], as it appeared in the
discussion of 4-dimensional hyper-hermitian Riemannian metrics admitting a tri-holomorphic
Killing vector. A first implication is that the geometry of the base-space belongs to a subclass
of 3-dimensional Einstein-Weyl spaces, called hyper-CR or Gauduchon-Tod spaces: one of
the extra constraints to be imposed on the EW-spaces is nothing more than the integrability
condition (46) which is called the generalised Abelian monopole equation. As we will see later
on, and can be expected from the similar discussion in [4], the equations determining the
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seed function IΛ, will be generalised non-Abelian monopole equation or, said differently, the
straightforward generalisation of the standard Bogomol’nyi equation on R

3 to GT-spaces;
eq. (46) is of course implied by these upon contraction with CΛ.

In ref. [9], Behrndt and Cvetič realised that their 5-dimensional cosmological solutions
could be dimensionally reduced to 4-dimensional ones, which raises the question of what
solution found by Grover et al. [10] can be reduced to solutions we are going ot find. As
in this case we are dealing with a map between the 5-dimensional time-like case and the 4-
dimensional time-like case, the dimensional reduction has to be over the 4-dimensional base-
space, which was found to be hyperKähler-torsion [10]. The key to identifying the subclass of
5-dimensional solutions that can be reduced to ours, then lies in a further result of Gauduchon
& Tod (see remark 2 in ref. [24]), which states that the solutions to eqs. (45) and (46) are
obtained by the reduction of a conformal hyper-Kähler space along a tri-holomorphic Killing
vector. In fact, as is nicely discussed in [10, sec. (3.2)], these spaces are particular instances of
HKT-spaces. This inheritance of geometrical structures also ocurrs in ordinary supergravity
theories in 6, 5 and 4 dimensions and it is reasonable to suppose that this also holds for
fake/Wick-rotated supergravities. As a final comment, let us mention that the 3-dimensional
Killing spinor equation on a GT-manifold allows non-trivial solutions [25].

Before turning to the equations of motion, we deduce the following equation for ω from
the anti-symmetrised version of eq. (23) and the explicit coordinate expression in (42). As
the reader will observe, this calculation needs the explicit form for the 2-form T +, which
can be obtained from eq. (22) and the rule that an general imaginary self-dual 2-form B+ is
determined by its contraction with V by means of (See refs. [16] for more detail)

B+ =
1

4|X|2
(

V ∧ ıV B+ + i ⋆
[

V ∧ ıV B+
] )

. (48)

The result reads
dω + gCΛÃΛ ∧ (dτ + ω) =

√
2 ⋆ [V ∧ 〈I| DI〉] . (49)

Contracting the above equation with V we find that

£V ω = g
√

2CΛÃΛ −→ ω = gCΛÃΛ τ + ̟ , (50)

where ̟ = ̟mdym is τ -independent. Substituting the above result into eq. (49) and evalu-
ating its r.h.s., we obtain

d̟ + gCΛÃΛ ∧̟ + gCΛF̃Λ τ = 1
2 〈I| D̃mI − ωm∂τI〉 V xmεxyz V y ∧ V z . (51)

There is a possible inconsistency in this equation due to the possible τ -dependence in the above
equation; as the equation is at most linear in τ , we can investigate the possible inconsistency
by taking the τ -derivative, only to find eq. (46). The equation determining ̟ is then found
by splitting off the τ -dependent part and reads

D̃ ̟ = 1
2 εxyz 〈Ĩ | D̃xĨ −̟x∂τI〉 V y ∧ V z , (52)

where we introduced Ĩ = I(τ = 0).
The symplectic field strength F T = (FΛ, FΛ) then easily be deduced to give the standard

supersymmetric result

F = −1
2 D (R V ) − 1

2 ⋆ [V ∧ DI]
= −1

2 D (R V ) −
√

2
8 εxyz V m

x

[

D̃mI − ωm∂τI
]

V y ∧ V z , (53)
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which agrees completely with the imposed gauge-fixing (27).
At this point we would like to treat the Bianchi identity DFΛ = 0, as it was treated in

ref. [4], namely as leading to a Bogomol’nyi equation determining the pair (ÃΛ,IΛ); this
approach boils down to stating that since we are given the potential in eq. (44), the Bianchi
identity is solved identically. This does, however, not mean that any given ÃΛ leads to a field
strength with the form prescribed by fake-supersymmetry in eq. (53). If we then impose that
a given ÃΛ leads to a field-strength with the prescribed form implies imposing the equation

F̃Λ
xy = − 1√

2
εxyz

D̃zIΛ , (54)

which due to eq. (41) is manifestly τ -independent. This equation is the generalisation of the
standard Bogomol’nyi equation on R

3 to a 3-dimensional Gauduchon-Tod space. Clearly, the
above equation implies the constraint (46) upon contraction with CΛ.

In order to show that the time-like solutions to the fKSEs we characterised are indeed
solutions to the equations of motion, we need to impose the Maxwell-Yang-Mills equations of
motion, i.e. eq. (13). This equation consists of 2 parts, namely one in the time-direction, e.g.
Bt

Λ, and one in the space-like directions, Bx
Λ. A tedious but straightforward calculation shows

that Bt
Λ = 0 identically, in full concordance with the discussion in section (1); the equations

of motion in the x-direction, however, do not vanish identically. In stead, they impose the
condition

(

D̃x − ωx∂τ

)2
IΛ = g2

2 fΛ(Ω
Γf∆)Γ

ΣIΩI∆ IΣ − g2

2 fΛΩ
ΣIΩIΣ CΓIΓ , (55)

which in the limit C→ 0 coincides with the result obtained in ref. [4]. A simplification of the
above equation can be obtained by observing that, due to eqs. (47) and (50),

∂τ

(

D̃mIΛ − ωm∂τIΛ
)

= ∂τ∂mIΛ = 0 . (56)

Using the above identity and using the fact that IΛ is linear in τ , we can rewrite eq. (55) as

D̃
2
x ĨΛ −

(

D̃x̟x

)

∂τIΛ = g2

2 fΛ(Ω
Γf∆)Γ

ΣIΩI∆ ĨΣ − g2

2 fΛΩ
ΣIΩĨΣ CΓIΓ , (57)

which is a τ -independent equation!

2.1 Recapitulation and some comments

Let us, before making some comments on the generic behaviour of the solutions, spell out
the way how to construct solutions using the results obtained in the foregoing section: the
first step is to decide which model to consider, i.e. one has to specify what special geometric
manifold is to be used, what non-Abelian groups can and will be gauged, and furthermore
the constants CΛ. Given the model, we must then decide what 3-dimensional hyperCR/GT
space we are going to use to describe the geometry of the 3-dimensional base-space; this is
equivalent to finding the triple (V x, CΛÃΛ, CΛIΛ) solving eq. (45). This decision, then, allows
us in principle to solve the Bogomol’nyi equation (54) as to determine (ÃΛ,IΛ).

The next step would be to determine the τ -independent part of the seed functions IΛ,
remember that their τ -dependence is fixed by eq. (41), using equation (57). As this equation
contains not only the IΛ but also ̟, we are forced to determine both objects and make sure
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that eq. (52) is satisfied. Having gone through the above steps, all that needs to be done is to
determine the field-strengths by means of eq. (53), write down the physical scalars Zi = Li/L0

and the metric by determining the stationarity 1-form ω by eq. (50) and the metrical factor
|X|2 through eq. (25). As usual the explicit construction of the last fields goes through the
solution of the stabilisation equation which determines the symplectic section R in terms of
the seed functions I; for many models, solutions to the stabilisation equations are known.

As mentioned in the previous section, the 3-dimensional Einstein-Weyl spaces that occur
as the geometry of the base-space, can be obtained by reduction of hyper-Kähler spaces along
a tri-holomorphic conformal Killing vector (see ref. [10, sec. (3.2)] for detailed information),
which would put us in a position to discuss the solutions to the Bogomol’nyi equation (54).
However, knowing only explicit solutions to the non-Abelian Bogomol’nyi equation on R

3,6

means that for the moment the only non-trivial non-Abelian solutions we can build are the
ones that follow from the supersymmetric ones satisfying CΛIΛ = 0, which implies that CΛÃΛ

is gauge trivial so that the base-space is R
3, by substituting IΛ → IΛ − gCΛτ/(2

√
2).

As the base-space is R
3, the equations determining the τ -independent part of the I,

eqs. (54) and (57), reduce to the ones for N = 2 EYM deduced in ref. [4]: indeed the only
difference lies in the divergence of ̟ occurring in eq. (57), and in the R

3-case there is no
obstruction to choosing it to vanish from the onset.

At this point, then, the construction of fake-supersymmetric solutions boils down to the
substitution principle put forward by Behrndt & Cvetič in ref. [9]: given a supersymmetric
solution to N = 2 d = 4 EYM supergravity, Abelian [14] or non-Abelian [4, 27], substitute
IΛ → IΛ − CΛ/(2

√
2) τ and impose the restriction CΛIΛ = 0. Of course, when dealing

with non-Abelian gauge groups, not all choices for CΛ are possible, as one must respect the
constraint fΛΣ

ΓCΓ = 0.
The first observation is that generically the asymptotic form of the solution is not De

Sitter but rather Kasner, i.e. the τ -expansion of the base-space is power-like, making the
definition of asymptotic mass even more cumbersome than in the De Sitter case.7 The second
observation is that the metric has a curvature singularity at those events/points for which
|X|−2 = 0, which may be located outside our chosen coordinate system. This, however,
raises the question of the possibility having an horizon, or said differently, how to decide in a
practical manner when our solution describes a black hole. Observe that in the original Kastor
& Traschen solution for one single black hole, this question is readily resolved by changing
coordinates as to obtain the time-independent, spherically symmetric extreme RNDS black
hole, for which the criteria to have an horizon are known: in the original coordinate system,
the existence of a black hole can be expressed as the existence of a Killing horizon for a
time-like Killing vector, covering the singularity. The last observation, then, is that in the
general case no time-like Killing vector exists.

To see this consider for instance the CP
1
-model: this model has only one complex scalar

field Z living on the coset space Sl(2; R)/SO(2) and associated Kähler potential eK = 1−|Z|2,
so that we have the constraint 0 ≤ |Z|2 < 1. Choosing CΛ = (−2, 0), the potential can be
readily be calculated to be

V = 2g2
[

1 + 2 eK
]

, (58)

which is manifestly positive. Imposing I0 = 0 in order to have R
3 as the base space, and

6 Observe that this is a purely non-Abelian restriction as hyperCR/GT-metrics are known, see e.g. [26]
7 Let us in passing point out that in the resulting Kasner spaces there is a time-like conformal isometry of

the kind used in ref. [28] to define a conformal energy.
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I1 = 0 in order to have a static solution (i.e. ω = 0), the equations of motion imply that a
simple solution is

I0 =
gτ√

2
and I1 =

√
2 gλ −→ 1

2|X|2 = g2
[

τ2 − λ2
]

, (59)

where λ is a real constant. If λ = 0 the above solution leads to DS4, whereas if λ 6= 0 we can
introduce a new coordinate t through τ = λ cosh (gt), such that the solution is given by

ds2 = dt2 − sinh2 (gt) d~x2
(3) , (60)

Z = −i cosh−1 (gt) . (61)

At late times the metric is DS4 but is singular when t = 0; at that point in time also the
scalar becomes problematic as |Z(t = 0)|2 = 1, violating the bound, which in its turn implies
that the contribution of the scalars to the energy-momentum tensor blows up. Returning to
the point we were going to make, it is paramount that in this case no time-like Killing vector
exists. Had we on the other hand taken I1 =

√
2gp r−1, in which case a time-like Killing

vector exists, the metric can be transformed to the static form

ds2 = p2+R2−g2R4

R2 dt2 − R4

(R2+p2)(p2+R2−g2R4/4)
dR2 − R2dS2 . (62)

This metric has one Killing horizon, identified with the cosmological horizon, for R > 0 and
is therefore a naked singularity, with the singularity being located at R = 0. In the static
coordinates, the scalar field reads Z = −ip (p2 + R2)−1/2, which explicitly breaks the bound
0 ≤ |Z|2 < 0 at R = 0, showing once again the link between the regularity of the metric and
that of the scalars.

A manageable prescription for deciding when a solution describes a black hole is clearly
desirable. In this respect, we would like to mention the isolated horizon formalism (see e.g.[29])
which attempt to give a local definition of horizons, without a reference to the existence of
time-like Killing vectors. This formalism was recently applied to sugras in ref. [30] and similar
work for fake sugras is in progress.

3 Null case

In this section we shall characterise the fake-supersymmetric solutions in the so-called null-
case, by which is meant the case when V 2 = 0: for simplicity we shall restrict ourselves to the
theories with no YM-type couplings, a full analysis along the lines of ref. [4] being possible
but, seeing the results obtained in that reference, not very rewarding. As in the time-like case,
the difference with the supersymmetric case lies in the fact that the vector-bilinear L to be
introduced below, is not a Killing vector; introducing then an adapted coordinate v through
La∂a = ∂v, we see that the metric will be explicitly v-dependent, unlike the supersymmetric
case. The aim of this section, then, is to determine this v-dependence and give 2 minimal
and simple, yet generic, solutions showing the changes brought about by the R-gauging.

In the Null case, the norm of the vector V vanishes, whence X = 0. This means that the 2
spinors ǫI are parallel, and following refs. [15, 4], we shall put ǫI = φIǫ, for some functions φI

and the independent spinor ǫ. The decomposition of ǫI follows from its definition as ǫI = (ǫI)
∗,

which then implies ǫI = φIǫ∗, where we have defined φI = φI . Furthermore, without loss
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of generality we can normalise the φ’s such that φIφ
I = 1. Once we take into account this

normalisation, we can write down a completeness relation for the I-indices which is

∆I
J = φIφ

J + εIKΦK εJLΦL , (63)

which is such that ∆I
JφJ = φI and ∆I

JεJKφK = εIKφK . Moreover one can see that
∆I

J = ∆J
I .

Projecting, then, the fKSEs (5,. . . ,8) onto the φ’s we obtain

0 = Daǫ + φI∇aφI ǫ , (64)

0 =
(

T +
ab + ig

4 CΛLΛ ηab

)

γbǫ∗ − εIJφI∇aφJ ǫ , (65)

0 = i/∂Zi ǫ∗ , (66)

0 =
[

/G
i+

+ Wi
]

ǫ . (67)

In order to advance we will introduce an auxiliary spinor η, normalised by ǫη = 1√
2

= −ηǫ;

due to the introduction of η we can introduce 4 null-vectors

La = iǫγaǫ
∗ , Na = iηγaη

∗ ,

Ma = iηγaǫ
∗ , Ma = iǫγaη

∗ ,
(68)

where L and N are real vectors and by construction M∗ = M , whence the notation. Observe
that eq. (166) implies that the vector L is nothing but V , but we shall denote it by L(ightlike)
in order to avoid confusion with the foregoing section. Given the above definitions it is a
straightforward yet tedious calculation to show that they form an ordinary normalised null-
tetrad, i.e. the only non-vanishing contractions are

La Na = 1 = − Ma Ma which implies ηab = 2 L(aNb) − 2 M(aM b) . (69)

Apart from the vectors one can also define imaginary-self-dual 2-forms, analogous to the
ones defined in eq. (167), by

Φ1
ab ≡ ǫγabǫ , Φ1 =

√
2 L ∧M ,

Φ2
ab ≡ ǫγabη , Φ2 = 1√

2

[

L ∧N + M ∧M
]

,

Φ3
ab ≡ ηγabη , Φ3 = −

√
2 N ∧M ,

(70)

where the identification on the r.h.s. follows from the Fierz identities.
The introduction of the above auxiliary spinor is not unique, and there still is some

freedom left; first of all we have the freedom to rotate ǫ and η by ǫ → eiθǫ and η → e−iθη.
This rotation does not affect L nor N , but rotates M → e−2iθM and M → e2iθM : we will
use this freedom to get rid of a phase-factor when introducing a coordinate expression for the
tetrad. The second freedom arises, because a shift η → η + δ ǫ, with δ a complex function,
does not affect the normalisation condition. The effect of this shift on the vectors is

L → L , M → M + δ L , N → N + |δ|2 L + δ M + δ̄ M , (71)

and this freedom can also be used to restrict the coordinate expressions of the tetrad.
Let us start introducing a coordinate system by introducing a coordinate v through L♭ ≡

La∂a = ∂v, and using eq. (64) to derive

∇aLb = gCΛAΛ
a Lb , (72)
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whence L is a recurrent null vector: this is the defining property of a space with holonomy
Sim(2) (see ref. [31] for more information) and the combination gCΛAΛ is called the recurrence
1-form. Anti-symmetrising this expression we see that dL = gCΛAΛ ∧ L, which implies not
only CΛFΛ ∧ L = 0, but also L ∧ dL = 0. This last result states that the vector L is hyper-
surface orthogonal, which implies the local existence of functions Y and u such that L = Y du.
Seeing, however, that L is charged under the R-symmetry, we can always gauge-transform
the function Y away, leaving the statement that L = du, whence also that CΛAΛ = Υ L, for
some function Υ. We can then write eq. (72) as

∇a Lb = gΥ LaLb which immediately implies ∇LL = 0 , (73)

so that L is a geodesic null-vector. Given this information and the normalisation of the tetrad
we can choose coordinates u, v, z and z̄ such that8

L = du , L♭ = ∂v ,

N = dv + Hdu + ̟dz + ̟dz̄ , N ♭ = ∂u − H∂v ,

M = eUdz , M ♭ = −e−U (∂z̄ − ̟∂v) ,

M = eUdz̄ , M
♭

= −e−U (∂z − ̟∂v) ,

(74)

where we used the U(1)-rotation M → e−2iθM to get rid of a possible phase in the expression
of M and M . The spin-connection and curvatures for the tetrad is given in Appendix (C). A
last implication of the Fierz identities is that

ε(4) ≡ 1
4! εabcd ea ∧ eb ∧ ec ∧ ed = i L ∧N ∧M ∧M = i e+ ∧ e− ∧ e• ∧ e•̄ , (75)

which implies that ε+−••̄ = i.
Given the above expressions for the tetrad one can calculate the implications of the re-

striction (73); one finds

∂vH = gΥ and 0 = ∂vU = ∂v̟ = ∂v̟ , (76)

whence the only v-dependence of the metric resides in H; The resulting form of the metric
is called a Walker metric, in honour of the late A.G. Walker, who was the first to give the
general d-dimensional metric of a space with holonomy contained in Sim(d− 2) in ref. [32].

In order to determine Υ, we can use the identity CΛFΛ = d
(

CΛAΛ
)

= dΥ ∧ L, which
presupposes knowing FΛ.

The generic form of FΛ can be derived from the fKSEs (65,67): consider first of all eq. (65).
Contraction with iǫ and iη leads to

ıLT + = ig
4 CΛLΛ L , (77)

ıMT + = ig
4 CΛLΛ M + i√

2
φIε

IJ dφJ . (78)

Coupling the above information to the fact that as T + is an imaginary-self-dual 2-form it
must be expressible in terms of the Φ’s defined in eq. (70), we see that

T + = ℵ L ∧M − ig
4 CΛLΛ

[

L ∧N + M ∧M
]

with
√

2ℵ = iφIε
IJ∇NφJ , (79)

8 See appendix (C) for the spin-connection and curvatures for this tetrad.
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and furthermore

√
2φIε

IJ∇MφJ = gCΛLΛ , 0 = φIε
IJ∇LφJ = φIε

IJ∇MφJ . (80)

Giving eq. (67) a similar treatment leads to

Gi+ = ℵi L ∧M − 1
4 Wi

[

L ∧N + M ∧M
]

, (81)

where ℵi are, at this point, undetermined functions. Using the by-now-well-known rule FΛ+ =

iLΛT + + 2fΛ
i Gi+, we find that

FΛ+ = ϕΛ L ∧M + V Λ
[

L ∧N + M ∧M
]

, (82)

where we introduced
V Λ = g

8

(

4LΛLΣ + Im(N )−1|ΛΣ
)

CΣ (83)

and
ℵ = 2i LΛ ϕΛ ; ℵi = −f̄ i

Λ ϕΛ ←→ ϕΛ = iℵ LΛ
+ 2ℵi fΛ

i . (84)

Using then FΛ = FΛ+ + FΛ− = 2Re
(

FΛ+
)

, and doing the comparison dΥ ∧ L = CΛFΛ, we
obtain

∇LΥ = −CΛ

[

V + V
]Λ

, (85)

∇MΥ = CΛ ϕΛ , (86)

∇MΥ = CΛ ϕΛ . (87)

It is clear that eq. (85) is the key to the possible v-dependence: in order to integrate it and
obtain H through eq. (76), we need to know the coordinate dependence of the scalars Z.

Information about said coordinate dependence can of course be obtained from eq. (66),
by contracting it with the iǫ and iη. The result is that

0 = ∇LZi = ∂vZ
i and 0 = ∇MZi = e−U ∂z̄Z

i , (88)

so that the Zi depend only on u and z. Likewise, the Z
ı̄
depend only on u and z̄.

Using the fact that the scalars are v-independent, integration of eq. (85) is straightforward
and leads to

Υ = − g
4

[

4
∣

∣CΛLΛ
∣

∣

2
+ Im (N )−1|ΛΣ

CΛCΣ

]

v + Υ1(u, z, z̄) , (89)

H = − g2

8

[

4
∣

∣CΛLΛ
∣

∣

2
+ Im(N )−1|ΛΣ

CΛCΣ

]

v2 + Υ1 v + Υ0(u, z, z̄) . (90)

By doing a coordinate transformation v → v + f(u, z, z̄) we can take Υ1 = 0, but for the
moment we shall ignore this possibility.

H can be written in terms of the potential V in eq. (17), with PΛ = 0 as we are ignoring
possible non-Abelian couplings, as

H = 1
2

[

g2
∣

∣CΛLΛ
∣

∣

2 − V

]

v2 + Υ1v + Υ0 , (91)

which is calculationally advantageous when V is known.
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At this point we have nearly completely specified the v-dependence of the solution, the
only field missing being the AΛ; in order to determine its v-dependence it is worthwhile to
impose the gauge-fixing ıLAΛ = 0, which is always possible and is furthermore consistent
with the earlier result CΛAΛ = Υ L. As a result of this gauge fixing we have that

∂vA
Λ = £LAΛ = d

(

ıLFΛ
)

= −
(

V + V
)Λ

L , (92)

so that
AΛ = −

(

V + V
)Λ

v L + ÃΛ = g
4 F

−1|ΛΣCΣ v L + ÃΛ , (93)

where ÃΛ is a v-independent 1-form satisfying ıLÃΛ = 0, and F is the imaginary part of
the prepotential’s Hessian; see eq. (146) for why this ocurrs.. Given this expression for the
vector potentials, the Bianchi identity is automatically satisfied, but, as in the time-like case,
this does not necessarily mean that any ÃΛ leads to a field-strength of the desired form.
Calculating the comparison we find that

dÃΛ =
(

V − V
)Λ

M ∧M

+
(

φΛ + θM

[

v
(

V + V
)Λ

])

L ∧M +
(

φ
Λ

+ θM

[

v
(

V + V
)Λ

])

L ∧M . (94)

Let us at this point return to the fKSEs, and evaluate eq. (7) using eqs. (81) and (88).
This evaluation results in

iθ+Zi γ+ǫI + iθ•Z
i γ•ǫI = −εIJ

[

Wiγ− − 2αiγ•̄] γ+ǫJ . (95)

The above equation is readily seen to be solved by observing that the constraint γ+ǫJ = 0 not
only leads to γ+ǫI = 0 under complex conjugation, but also to γ•̄ǫI = 0 and γ•ǫI = 0; these
last implications are due to the fact that we dealing with chiral spinors and the normalisation
in eq. (75).

Doing a similar analysis on the fKSE (5) in the v-direction shows that the spinor ǫI ,
whence also ǫI , is v-independent. The other equations become

D•̄ǫI = 0 , (96)

D•ǫI = ig
2 CΛ∗ εIJγ•̄ǫJ , (97)

D+ǫI = −ℵ εIJγ•̄ǫJ . (98)

Using the definition (4) and the spin-connection in eq. (174), we can expand eqs. (96) and
(97) as

0 = θ•̄ǫI − 1
2θ•̄

(

U + 1
2K

)

ǫI , (99)

0 = θ•ǫI + 1
2θ•

(

U + 1
2K

)

ǫI − ig
2 CΛLΛ εIJγ•̄ǫJ , (100)

The first equation is easily integrated by putting

ǫI = exp
(

1
2 S

)

χI(u, z) with S ≡ U + 1
2K , (101)

which upon substitution into eq. (100) leads to

∂zχI + (∂zS)χI = ig
2 CΛXΛ εIJγ•̄ eSχJ . (102)
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This last equation is potentially dangerous as it has a residual z̄-dependence, even though η
and XΛ are z̄-independent; it is this possible inconsistency that fixes S, as can be seen by
deriving eq. (102) w.r.t. z̄ and using the complex conjugated version of eq. (102) to get rid of
ηI in the resulting equations. The result is that S has to satisfy

∂z∂z̄S = − g2

2 e2S
∣

∣CΛXΛ
∣

∣

2 −→ e−2S = g2

2

∣

∣CΛXΛ
∣

∣

2 (

1 + |z|2
)2

. (103)

This unique choice for S is a necessary condition for the eqs. (99) and (100) to admit a
solution, but it may not be sufficient; in the next section we shall discuss the simplest null-
case solution to the minimal theory, and show that the system can be solved completely.
The lesson to be learned from that section is that the system (99,100) once we introduce S,
corresponds to an equation determining spinors on a 2-sphere, and has solutions even though
this is hard to see.

3.1 The electrically charged Nariai cosmos belongs to the Null case

The minimal theory is obtained by putting VT = (1,−i/2), which leads to the monodromy
matrix N = −i/2, so that Re(N ) = 0. if we then further fix C0 = 2, we see that the minimal
De Sitter theory is given by

∫

4

√
g

(

R − F 2 − 6g2
)

. (104)

Using the general results obtained thus far, we can write down the following solution

ds2 = 2du
(

dv − g2v2du
)

− dzdz̄

g2(1 + |z|2)2 .

A = −gv du , (105)

A small analysis shows that the metric is nothing more than DS2 × S2, albeit in a non-
standard coordinate system, and the solutions is known to the literature as the electrically
charged Nariai solution [33]. Observe that the local holonomy of the Nariai solution is not
the full sim(2), but rather so(1, 1) ⊕ so(2) ⊂ sim(2) [31].

In order to discuss the preserved fake-supersymmetries it is easier to write the metric as

ds2 = 2du
(

dv − g2v2du
)

− 1

4g2

[

dθ2 + sin2(θ)dϕ2
]

, (106)

and consider the fake-supergravity equations in terms of a 2-component vector of Majorana
spinors, also denoted by ǫ, namely

∇aǫ − gAaǫ = −1
4
/Fγaσ

2ǫ− g
2γaσ

2ǫ . (107)

The solution to the above equation is then seen to be

ǫ = exp
(

θ
2γ3σ2

)

exp
(

−ϕ
2 γ34

)

ǫ0 with γ+ǫ0 = 0 , (108)

where ǫ0 is a 2-vector of constant spinors. Some remarks are in order: in supersymmetry
one can associate a Lie superalgebra to a given supersymmetric solution [34], and for the
supersymmetric aDS2 × S2 maximally supersymmetric solutions in minimal N = 2 d = 4,
this algebra is su(1, 1|2). In the fake-supersymmetric case, however, one cannot assign a Lie
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superalgebra to the solution, as the vector bilinears which would represent the supertrans-
lation part, do not lead to Killing vectors; this fact is already illustrated by eq. (72). A
perhaps worrisome point is the action of the De Sitter’s Killing vectors on the preserved fake-
supersymmetry, especially since the Killing spinors are u- and v-independent. Taking into
account that the spinors are gauge-dependent objects means that this action is defined using
the R-covariant Lie derivative on spinors [35]; this derivative is defined for Killing vectors X
and Y as

LXǫ = ∇Xǫ + 1
4 (∂aXb) γabǫ − gξX ǫ with

{

dξX = £XA
ξ[X,Y ] = £XξY −£Y ξX

(109)

Using this Lie derivative, one can see that LXǫ = 0 for any X ∈ Isom(DS2).

3.2 Holomorphic scalars and deformations of the Nariai cosmos

In the supersymmetric case, there are 2 generic classes of solutions in the null case whose
supersymmetry is straightforward to see: the first are the pp-waves which are characterised
by the fact that the scalars depend only on u, and the cosmic strings which are characterised
by vanishing vector potentials AΛ, vanishing Sagnac connection, ̟ = 0, and a holomorphic
spacetime dependence of the scalars, i.e. Zi = Zi(z) [36, 15]. In this section we will consider
the analogue of the latter case and impose ̟ = 0 and that Zi is a function of z only. Due
to eq. (93), however, the vector potentials cannot vanish and we will look for the minimal
expression for ÃΛ for which the Bianchi identity, eq. (94) is solved: minimality implies that

φΛ = ve−U∂z̄

(

V + V
)Λ

and the Bianchi identity reduces to

dÃΛ = 2i Im

( XΛ

gCΣXΣ

)

dz ∧ dz̄

(1 + |z|2)2 , (110)

a solution to which exists locally and determines Ãu = 0 and ÃΛ
z and ÃΛ

z̄ as functions of z
and z̄.

Given the above identifications we can use eq. (82) to calculate the constraints imposed
by the Maxwell e.o.m.s, i.e. BΛ = 0 in eq. (13), which leads to

NΛΣ ∂z

(

V + V
)Σ

= ∂z

[

NΛΣV Σ + NΛΣV
Σ
]

, (111)

NΛΣ ∂z̄

(

V + V
)Σ

= ∂z̄

[

NΛΣV Σ + NΛΣV
Σ
]

, (112)

∂z

[

NΛΣ ∂z̄

(

V + V
)Σ

]

= ∂z

[

NΛΣ ∂z

(

V + V
)Σ

]

, (113)

the contribution due to ÃΛ dropping out identically. As eq. (112) is the complex conjugated
version of (111), and eq. (113) is the integrability condition for eqs. (111) and (112), we only
need to see that eq. (111) holds.

Using the holomorphicity of the scalars in order to write ∂z = ∂zZ
i ∂i, one can rewrite

eq. (111) as an equation in Special Geometry, namely

∂iNΛΣ V Σ + ∂iNΛΣ V
Σ

= 2iIm (N )ΛΣ ∂iV
Σ

= giLΛ CΓfΓ
i − gi

4 ∂iIm (N )ΛΣ Im (N )−1|ΣΓ
CΓ . (114)
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Some straightforward algebra using the expressions (140) and (141) shows that the above
equation holds, whence the Maxwell equations are solved for arbitrary scalar functions Zi(z).

Had we been sure of the fact that the generic expressions for the fields we are using solve
the fKSEs, we would have deduced from the KSIs that we only need to verify B++ = 0 as to
be sure that the proposed configuration solves the equations of motion. As we are not 100%
sure of this fact, however, we checked that all of the equations of motion are indeed satisfied.
As was to be expected from the discussion of the Maxwell equations, all the e.o.m.s reduce
to Special Geometry calculations.

In conclusion then, given an expression for Zi = Zi(z), we need to find the local expression
for ÃΛ from eq. (110), and the solution is given by

ds2 = 2du
(

dv − 1
2H0v

2 du
)

− 4

g2 |CΛLΛ|2
dzdz̄

(1 + |z|2)2 , (115)

AΛ = g
4F

−1|ΛΣCΣ v du + ÃΛ , (116)

where
H0 = V − g2

∣

∣CΛLΛ
∣

∣

2
. (117)

Nariai-like solutions can be obtained by taking the scalars Zi to be constants, in which
case the zz̄-part of the metric describes a 2-sphere of radius g|CΛL|. Depending on H0, the
uv-part of the metric describes DS2 (H0 > 0), 2-dimensional Minkowski space (H0 = 0) or
aDS2 (H0 < 0). As before, these spaces have local holonomy contained in sim(2); the solution
for generic Zi(z), however, has proper sim(2) holonomy.

4 Non-BPS solutions to N = 2 sugra from fEYM

As is well-known, there are models in N = 2 d = 4 sugra coupled to vector-multiplets for
which one can choose the Fayet-Iliopoulos terms such that the hyper-multiplet contribution
to the potential vanishes (see e.g. [21] or [5, sec. 9] for a discussion of this point). As we
are basically dealing with a Wick-rotated version of the general supersymmetric set-up, this
implies that there are fake-supersymmetric models in which the only contribution to the
potential comes from the gauging of the isometries, as the FI-contributions cancel. In that
case the bosonic action (19) coincides with that of an ordinary YMH-type of supergravity
theory, and we must conclude that for those specific models the solutions we obtained are in
fact non-BPS solutions of a regular supergravity theory.9 Let us illustrate this fact with an
example: the dimensional reduction of minimal 5-dimensional sugra.

The dimensional reduction of minimal 5-dimensional sugra leads to a specific N = 2 d = 4
sugra, namely minimal sugra coupled to one vector-multiplet with a prepotential given by

F (X ) = −1
8

(X 1)
3

X 0 . (118)

With the usual choice Z = X 1/X 0, one finds that the scalar-manifold is Sl(2; R)/U(1) with
the corresponding Kähler potential eK = Im3 (Z); observe that this implies the constraint

9 Needless to say, this reasoning also holds for the ordinary gauged N = 2 d = 4 supergravities with
potentials whose FI-contribution vanishes.
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Im (Z) > 0. Ignoring the possibility of gauging isometries of the resulting scalar-manifold, so
that P = 0, we can calculate the potential in eq. (17) only to find

V = 2g2

3

[

C2
1 Im−1(Z) + 6C0C1 Re(Z)Im−3(Z)

]

. (119)

There are two interesting sub-classes to be considered, the first one being CΛ = (0, C1) for
which the potential is of the correct form to correspond to the dimensionally reduced version
of the theory considered in [10].

The second case is CΛ = (C0, 0), which seeing that the potential is linear in C0 means
that the potential vanishes. By construction this not only means that we can construct non-
BPS solutions to the 4-dimensional supergravity theory, but also that it can be oxidised to
minimal 5-dimensional sugra. A simple time-like static solution for this latter case can be
found by putting I0 = 0, so that we can take the base-space to be R

3, and I1 = 0 as to
ensure staticity, i.e. ω = 0; the regularity of the solution to the stabilisation equations, or
equivalently the consistency of the metrical factor |X|2, imposes the constraint I0

(

I1
)3

< 0.
With this information the solution is determined by

1

2|X|2 =

√

2
∣

∣

∣
I0 (I1)3

∣

∣

∣
, Z = 2i

√

∣

∣

∣

∣

I0
I1

∣

∣

∣

∣

, (120)

so that the solution is asymptotically Kasner. As the effective radius of the compactified fifth
direction is proportional to Im(Z) which grows linear in τ , this solutions is asymptotically
decompactifying; the resulting 5-dimensional metric is readily found to be (shifting I1 →√

2 H)

ds2
(5) = 2H−1 dy

(

dτ − 2
√

2 |I0| dy
)

− H2 d~x2 . (121)

which can be transformed to a Walker metric for a space of holonomy Sim(3) [32]. Observe
that the relation between d + 1 dimensional spaces of holonomy in Sim(d − 1) and time-
dependent black holes, of which the foregoing is one example, was first introduced and used
in ref. [31].

The generic solution in section (3.2) can readily be adapted to the model at hand and
reads

ds2 = 2du
(

dv + λ2 v2 Z−3 du
)

− 2
λ2 Z3 dzdz̄

(1−|z|2)2 , (122)

where we introduced the abbreviations
√

2λ = gC0 and Z = Im(Z). The vector fields are
given by the expression (93), with Ã0 = 0 and Ã1 needs to satisfy

dÃ1 =
√

2iλ Z dz∧dz̄
(1+|z|2)2 , (123)

which presupposes knowing the explicit dependence of Z on z.
Lifting this solution up to 5 dimensions we obtain, after the coordinate transformations

v → e
√

2λyw where y is the 5th direction, the following solution

ds2
(5) = 2Z−1 e

√
2λy dudw − Z2

[

dy2 + 2
λ2

dzdz̄
(1−|z|2)2

]

, (124)

Â =
√

3 Re (Z)
[

dy + 2
√

2λ Z−3 vdu
]

−
√

3 Ã1 , (125)

where Ã1 is determined by the condition (124): this solution is a deformation of the maximally
supersymmetric aDS3×S2 solution, and deformations of the other maximally supersymmetric
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5-dimensional solutions can be obtained by using the Sp(2; R)-duality transformations before
oxidation, similar to how the 4- and 5-dimensional vacua are related (see e.g. ref. [37]).

Let us end this section by pointing out that there are more models for which the FI-
contribution to the potential vanishes [5]. One of them is the ST [2,m]-model, which in the
ungauged supergravity model, allows for the embeddings of monopoles and the construction
of non-Abelian black holes [4], and we will briefly talk about the solutions.

A convenient parameterisation of the model is given by the symplectic section

V =

(

LΛ

ηΛΣS LΣ

)

with







η = diag([+]2, [−]m)

0 = ηΛΣLΛLΣ
. (126)

The FI-part of the potential is easily calculated and gives [21, 5]

VFI = − g2

4 Im−1 (S) CΛηΛΣCΣ , (127)

so that VFI = 0 whenever C is a null-vector w.r.t. η. Taking ST [2, 4] as the model to work
with and C to be a null-vector, we can gauge an SU(2)-gauge group, and by further taking
CΛIΛ = 0, implying that the base-space is R

3, we can generalise the solutions found in ref. [27]
to cosmological solutions. For that take the indices Λ to run over (0,+,−, i) (with 0 a time-
like direction, ± the null directions and i = 1, 2, 3) and let C+ be the only non-vanishing
element of the Cs. By taking then I± = I0 = Ii = 0 we find a static solution, i.e. ω = 0,
which allows for the embedding of an ’t Hooft-Polyakov monopole, say, in the I is. If we then
further take Ĩ+ = 0 and normalise the metric on constant-τ slices to be asymptotically R

3,
which is equivalent to taking Ĩ− and I0 to be suitable constants, we see that the metric is
determined through eq. (43) and

1

2|X|2 =
√

τ

√

1 + µ2

g2

[

1−H
2
]

, (128)

where H is a completely regular function of r ∈ R coming from the ’t Hooft-Polyakov
monopole: it reads

H = coth (µr) − 1

µr
, (129)

and is a monotonic functions with H(r = 0) = 0 and asymptoting to H(r → ∞) = 1. This
means that the constant-τ slices are complete: the full metric, however, suffers from an initial
singularity at τ = 0 and also from Kasner expansion.

More general solutions can of course be constructed by considering the hairy or coloured
solutions in refs. [27, 4], in case one is interested in non-Abelian solutions, or the general
Abelian solutions of ref. [14]; to these solutions the general the comments made in section
(2.1) apply.

5 Conclusions...

In this article we studied the fake-supersymmetric solution that can be obtained from N = 2
d = 4 gauged supergravity coupled to (non-Abelian) vector multiplets, by Wick-rotating the
FI-term needed in order to obtain gauged supergravity. As is usual in the classification of
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(fake-)supersymmetric solutions, the solutions are divided into two classes, denoted the time-
like- and the null-case, which are distinguished by the norm of the vector built out of the
preserved Killing spinor.

In the time-like case we find that the metric is of the standard conformastationary form,
appearing naturally in the supersymmetric time-like solutions, with the difference that the
metric is to have a specific time dependence; this time dependence is such that there is a natu-
ral substitution principle, as first pointed out by Behrndt and Cvetič [9], of creating solutions
from the known supersymmetric solutions to N = 2 d = 4 supergravity coupled to (non-
Abelian) vector multiplets. Apart from this time-dependence, we find that the base-space
must be a subclass of 3-dimensional Einstein-Weyl spaces known as hyperCR- or Gauduchon-
Tod spaces [24], and that half of the seed functions, namely the IΛ, must obey the Bogomol’nyi
equation generalised to GT-spaces.

In the null-case we find that the solutions must have a holonomy contained in Sim(2),
which arguably can be considered to be a minor detail: it was, however, shown in ref. [38]
that the purely gravitational solutions of this kind have rather special properties with respect
to quantum corrections, and it is not unconceivable that this holds for the more general
class of solutions with Sim(2)-holonomy in supergravity theories, such as the one presented
in section (4).

We did not develop a full-fledged characterisation of the solutions in the null-case, but
instead focussed on the new characteristics induced by the interplay between Sim(2)-holonomy
and Special Geometry. The end result is what can be considered to be a back-reacted solution
describing the intersection of a Nariai/Robinson-Bertotti space with a generic (stringy) cosmic
string [15].

The fact that the holonomy is contained in Sim(2) is caused by the fact that we are gauging
an R-symmetry, where-from one deduces that the null-vector one constructs as a bilinear of
the preserved Killing spinor is gauge-covariantly constant null-vector; said differently it is
a recurrent null-vector, whence the 4-dimensional space has holonomy Sim(2) [31]. As the
Wick-rotation needed to create fake supergravities from ordinary gauged supergravities will
always introduce an R-gauging, one might be inclined to think that fake supersymmetric
solutions in the null case always have infinitesimal holonomy in sim(d− 2). This is, however,
only partially true. Consider for instance the theory studied by Grover et al [10]: in that case
one can see that the recurrency condition (72) still holds but with the Levi-Cività connection
replaced with a metric compatible, torsionful connection, where the torsion is completely
anti-symmetric and proportional to the Hodge dual of the graviphoton field strength. As
the connection is metric, the link between the recurrency relation and sim-holonomy going
through mutatis mutandis, we see that in fake N = 1 d = 5 gauged supergravity theories,
there is a Sim(3) holonomy even though in general it is not associated to the Levi-Cività
connection.

As was shown by Gibbons & Pope in ref. [31], and illustrated in section (4), time-dependent
solution of the kind found in the time-like case can be obtained by dimensional reduction of
spaces with Sim-holonomy; the solutions in the time-like case can also be obtained from the
solutions in the 5-dimensional time-like case. This strongly suggest that the ordinary hierar-
chy of supersymmetric solutions, and the geometric structures appearing in them, to theories
in d = 6, 5 and 4 with eight supercharges has a fake analogue.

Note added: Shortly after this paper appeared, Gutowski & Sabra [39] published the classi-
fication of the fake supersymmetric solutions to the minimal theory. Let us for completeness
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point out that the general solution to the null-case is the Nariai solution in eq. (105) with the
substitution guu = −2g2v2 → −2g2v2 + 2Υ0(z, z̄), with ∂z∂z̄Υ0 = 0
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A Special Geometry: the bear necessities

The formal starting point for the definition of a Special Kähler manifold, lies in the definition
of a Kähler-Hodge manifold.10 A KH-manifold is a complex line bundle over a Kähler manifold
M, such that the first, and only, Chern class of the line bundle equals the Kähler form. This
then implies that the exponential of the Kähler potential can be used as a metric on the Line
bundle. Furthermore, the connection on the line bundle is Q = (2i)−1(dzi∂iK− dz̄ ı̄∂īK). Let
us denote the line bundle by L1 → M, where the superscript is there to indicate that the
covariant derivative is D = ∇+ iQ

Consider then a flat 2(n + 1) vector bundle E → M with structure group Sp(n + 1; R),
and take a section V of the product bundle E ⊗ L1 → M and its complex conjugate V,
which is a section of the bundle E ⊗ L−1 →M. A special Kähler manifold, then is a bundle
E ⊗ L1 →M, for which there exists a section V such that

V =

(

LΛ

MΛ

)

→























〈V | V〉 ≡ LΛMΛ − LΛMΛ = −i

Dı̄V = 0 ,

〈DiV | V〉 = 0 .

(130)

By defining the objects

Ui ≡ DiV =

(

fΛ
i

hΛ i

)

, U ı̄ = Ui , (131)

it follows from the basic definitions that

Dı̄ Ui = Gīı V , 〈Ui | U ı̄〉 = iGīı ,

〈Ui | V〉 = 0 , 〈Ui | V〉 = 0 .

(132)

Let us have a look at 〈DiUj | V〉 = −〈 Uj | Ui〉, where we have made use of the third constraint.
As one can see the r.h.s. is antisymmetric in i and j, whereas the l.h.s. is symmetric This

10 This appendix is meant to be concise but not exhaustive. The interested reader is kindly referred to
ref. [5] and references therein.
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then means that 〈DiUj | V〉 = 〈Uj | Ui〉 = 0. The importance of this last equation is that if
we group together EΛ = (V,Ui), then we can see that 〈EΣ | EΛ〉 is a non-degenerate matrix,
which allows us to construct an identity operator for the symplectic indices, such that for a
given section of A ∋ Γ (E,M) we have

A = i〈A | V〉 V − i〈A | V〉 V + i〈A | Ui〉G īı U ı̄ − i〈A | U ı̄〉G īıUi . (133)

We saw that DiUj is symmetric in i and j, but what more can be said about it? As one can
easily see, the innerproduct with V and U ı̄ vanishes due to the basic properties. Let us then
define the weight (2,−2) object

Cijk ≡ 〈Di Uj | Uk〉 → Di Uj = iCijkGkl̄U l̄ , (134)

the last equation being a consequence of eq. (133). Since the U ’s are orthogonal, however,
one can see that C is completely symmetric in its 3 indices, and 2 small calculations show
that

Dı̄ Cjkl = 0 , D[i Cj]kl = 0 . (135)

Let us then introduce the concept of a monodromy matrix N , which can be defined through
the relations

MΛ = NΛΣ LΣ , hΛi = NΛΣ fΣ
i , (136)

The relations of 〈Ui | V〉 = 0 then implies that N is a symmetric matrix, which then auto-
matically trivialises 〈Ui | Uj〉 = 0.

Observe that as Im (NΛΣ) ≡ Im (N )ΛΣ appears in the kinetic term of the (n̄ = n + 1)
vector fields it has to be negative definite, whence also invertible, in order for the kinetic
term to be well-defined: one can see that this is implied by the properties of special geometry
[21]. As it is invertible, we can use it as a ‘metric’ for raising and lowering the Λ-indices, e.g.

LΛ ≡ Im (N )−1|ΛΣ LΣ. Likewise we can, and shall, use Gi̄ to raise and lower Kähler indices.
From the other basic properties in (132) we find

LΛLΛ
= −1

2 , LΛ fΛ
i = 0 , fΛi f̄Λ

̄ = −1
2Gi̄ . (137)

An important identity that one can derive, is given by

UΛΣ ≡ fΛ
i G īıf̄Σ

ı̄ = −1
2Im(N )−1|ΛΣ − LΛLΣ , (138)

so that UΛΣ = UΣΛ.
Let us construct the (n+1)×(n+1)-matrices M = (MΛ, h̄Λ ı̄) and L = (LΛ, f̄Λ

ı̄ ). With it
we can write the defining relations for the monodromy matrix as MΛΣ = NΛΩLΩ

Σ, a system
which we can easily solve by putting N = ML−1, where L−1 is the inverse of L. Formally
one finds

L−1 = −2

(

LΛ

f ı̄
Λ

)

, (139)

which is a recursive argument, but is useful to derive

∂ı̄NΛΣ = −4i
(

f̄Λı̄LΣ + LΛf̄Σı̄

)

, (140)

and
∂ı̄NΛΣ = 4 C ı̄̄k̄ f ̄

Λ f k̄
Σ . (141)
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These last equations are used extensively in the null-case.
In explicit constructions of the models it is worthwhile to introduce the explicitly holo-

morphic section Ω = e−K/2V, which allows us to rewrite the system (130) as

Ω =

(

XΛ

FΣ

)

→























〈Ω | Ω〉 ≡ XΛFΛ − XΛFΛ = −i e−K

∂ı̄Ω = 0 ,

〈∂iΩ | Ω〉 = 0 .

(142)

If we now assume that FΛ depends on Zi through the X ’s, then from the last equation we
can derive that

∂iXΛ
[

2FΛ − ∂Λ

(

XΣFΣ

)]

= 0 . (143)

If ∂iXΛ is invertible as a n× (n + 1) matrix, then we must conclude that

FΛ = ∂ΛF(X ) , (144)

where F is a homogeneous function of degree 2, baptised by the literature as the prepotential.
Making use of the prepotential and the definitions (136), we can then calculate

NΛΣ = FΛΣ + 2i
Im(F)

ΛΛ′XΛ
′

Im(F)
ΣΣ′XΣ

′

XΩIm(F)
ΩΩ′XΩ′ , (145)

which, though not beautiful, is at least manifestly symmetric. From the above expression we
can obtain the sometimes useful result

Im (N )−1|ΛΣ = −F−1|ΛΣ − 2LΛLΣ − 2LΛLΣ , (146)

where F−1 is the inverse of FΛΣ ≡ Im (FΛΣ). Having the explicit form of N we can derive an
explicit representation for C, namely

Cijk = eK ∂iXΛ ∂jXΣ ∂kXΩ FΛΣΩ , (147)

so that the prepotential determines all structures in special geometry.

A.1 Killing vectors in special geometry

We are interested in holomorphic Killing vectors associated to the Kähler manifold with
metric G. More to the point, we consider the real vector

K = Ki(Z) ∂i + K̄ı̄(Z) ∂ı̄ −→ £KG = 0 . (148)

For reasons that have to do with the number of available vectors in the theory, n̄ ≡ n + 1, we
can only use n̄ of the possible Killing vectors, and therefore we shall always label the Killing
vectors by an index like Λ, even though we are not going to use all n̄ of them; in fact, as we
have to use 1 gauge field to gauge the R-symmetry, we can use at most n vectors to gauge
isometries.

In general these Killing vectors define a non-Abelian algebra, which we take to be

[ KΛ , KΣ ] = −fΛΣ
Γ KΓ . (149)
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The isometries need not leave invariant the Kähler potential, in stead they must leave it
invariant up to a Kähler transformation, i.e.

£ΛK ≡ KΛ K = λΛ(Z) + λΛ(Z) , (150)

where we used the conventions that by £Λ we actually mean £KΛ
. It is clear that the Kähler

transformation parameters λ have to form a representation under the group that we are
gauging and in fact one sees that

£ΛλΣ − £ΣλΛ = −fΛΣ
Ω λΩ . (151)

If we then also assume that the Killing vectors are compatible with the complex struc-
ture J defined on the Kähler manifold, and therefore also with the Kähler form K(X,Y ) ∼
G(JX,Y ), we can derive

£Λ K = d (ıΛK) −→ 2π ıΛK = dPΛ , (152)

where the object PΛ is called the momentum map associated to KΛ. A closed form for the
momentum map can be easily seen to be

iPΛ = 1
2

(

Ki
Λ ∂iK − Kı̄

Λ ∂ı̄K − λΛ + λΛ

)

= Ki
Λ ∂iK − λΛ , (153)

where we made use of eq. (150) and fixed a possible constant to be zero. Using this form and
eq. (151), it is straightforward to show that

£ΛPΣ = −fΛΣ
Ω PΩ , (154)

The action of the Killing vector on the symplectic section is most easily described on the
(1, 0)-weight section Ω. In fact, by consistency it must transforms as

£Λ Ω = SΛ Ω − λΛ Ω , (155)

where S ∈ sp(n̄; R) and forms a representation of the algebra we are gauging, i.e. [SΛ, SΣ] =
fΛΣ

Γ SΓ. The natural space-time, not Kähler, connection that acts on this symplectic section
is

DΩ =
(

∇ + ∂Zi ∂iK + ig AΛ PΛ + g AΛ SΛ

)

Ω , (156)

which is constructed in such a way that δαDΩ = αΛ (SΛ − λΛ) DΩ. From the above equation
it is a small calculation to derive the covariant derivative on objects such as V or V. In fact,
one can see that if we are dealing with a symplectic (p, q)-weight object, then we have

δαΦ(p,q) = αΛ
(

SΛ − p λΛ − q λ̄Λ

)

Φ(p,q) &

DΦ(p,q) =
[

∇ + p ∂Zi ∂iK + q ∂Z
ı̄
∂ı̄K + i(p − q)g AΛ PΛ + g AΛ SΛ

]

Φ(p,q) −→

δαDΦ
(p,q) = αΛ

(

SΛ − p λΛ − q λ̄Λ

)

DΦ(p,q) . (157)

Now that we have defined the various covariant derivatives, we can go on to derive

Ki Ui = (SK + iPK) V −→ DV = DZi Ui , (158)
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which in its turn can be used to obtain

DUi = DZj DjUi + DZ
̄

D̄Ui and DN = DZi ∂iN + DZ
ı̄
∂ı̄N . (159)

Equation (158) allows us to write down the following identities

0 = 〈V | SΛV〉 , PΛ = 〈V | SΛV〉 ,

KΛı̄ = i〈U ı̄ | SΛV〉 , 0 = 〈Ui | SΛV〉 .

(160)

As in ref. [4], we shall restrict ourselves to a subset of possible gaugings that we consider:
in fact we shall restrict ourselves to groups whose embedding into sp(n̄; R) is given by

SΛ =

(

[SΛ]Σ Ω 0
0 − [SΛ]Σ

Ω

)

=

(

fΛΩ
Σ 0

0 −fΛΣ
Ω

)

. (161)

With this restriction on the gaugeable symmetries, we can then derive the following important
identity

0 = LΛ Ki
Λ . (162)

Further identities that follow are

LΛ PΛ = 0 , LΛ λΛ = 0 , f̄Λ i PΛ = i LΛ
Ki

Λ . (163)

B Bilinears and Fierz identities

In this appendix we shall present the definitions of the bilinears; the definitions used in this
article are based on, but not equal to, those of ref. [15].

The scalar-bilinears are defined by

X = 1
2εIJ ǭIǫJ , ǭIǫJ = εIJ X ,

X = 1
2εIJ ǭIǫJ , ǭIǫJ = εIJ X .

(164)

The vector bilinears are defined by

V I
a J ≡ iǭIγaǫJ = 1

2 Va δI
J + 1

2 V x
a (σx)I J , (165)

which can be inverted to

Va = V I
a I and V x

a = (σx)I
J V I

a J . (166)

Finally we have 3 imaginary-selfdual 2-forms defined by

ΦIJ ab ≡ ǭIγabǫJ = Φx
ab

i
2 (σx)IJ −→ Φx = i (σx)IJ ΦIJ . (167)

The anti-imaginary-self-dual 2-forms are defined by complex conjugation.
From the Fierz identities we can then derive that

ηab =
1

4|X|2 [VaVb − V x
a V x

b ] , (168)
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and consistently with the above that

ıV V x = 0 , g (V, V ) = 4|X|2 , g (V x, V y) = −4|X|2 δxy . (169)

A result that is harder to be found is

X Φx
ab = −i

[

V[aV
x
b] + i

2εab
cdVcV

x
d

]

, (170)

which translates to

X Φx =
1

2i
[V ∧ V x + i ⋆ (V ∧ V x)] , (171)

in form notation.
In the null-case, i.e. when X = 0, the V x are proportional to V and the Φs become linear

dependent, severely limiting the utility of the bilinears. In section (3), we will, following
ref. [2], introduce an auxiliar spinor which leads to Fierz identities similar to the ones above.

C Curvatures for the null case

Let us set-up a null-Vierbein by

ds2
null = e+ ⊗ e− + e− ⊗ e+ − e• ⊗ e•̄ − e•̄ ⊗ e• , (172)

and choose11

e+ = L = du , θ+ = N ♭ = ∂u − H∂v ,

e− = N = dv + Hdu + ̟dz + ̟dz̄ , θ− = L♭ = ∂v ,

e• = M = eUdz , θ• = −M
♭

= e−U [∂z −̟∂v] ,

e•̄ = M = eUdz̄ , θ•̄ = −M ♭ = e−U [∂z̄ −̟∂v] ,
(173)

where conforming to the results of eq. (76) only H = H(u, v, z, z̄) and U and the ̟s depend
on u, z and z̄.

The non-vanishing components of the spin-connection are then seen to be

ω+− = −θ−H e+ , (174)

ω+• =
(

e−Uθ+̟ − θ•H
)

e+ −
[

θ+U + 1
2e−2U (∂z̟ − ∂z̟̄)

]

e•̄ , (175)

ω+•̄ =
(

e−Uθ+̟ − θ•̄H
)

e+ −
[

θ+U − 1
2e−2U (∂z̟ − ∂z̟̄)

]

e• , (176)

ω••̄ = 1
2e−2U (∂z̟ − ∂z̟̄) e+ − e•θ•U + e•̄ θ•̄U . (177)

A further calculation then leads to the Ricci tensor, whose non-vanishing coefficients are

R+− = −θ2
−H , (178)

R••̄ = 2e−2U ∂z∂z̄U , (179)

R+• = e−Uθ+∂zU − θ•θ−H + 1
2θ•

(

e−2U [∂z̟ − ∂z̟̄]
)

, (180)

R+•̄ = R+• , (181)

R++ = 2e−Uθ2
+eU + 2θ−H θ+U + 1

2e−4U (∂z̟ − ∂z̟̄)2

−e−Uθ•
[

eUθ•̄H
]

− e−Uθ•̄
[

eUθ•H
]

+ e−2U∂u (∂z̟ + ∂z̟̄) . (182)

Observe that the last term in eq. (182) can always be put to zero by the coordinate transfor-
mation v −→ v + ρ(u, z, z̄).

11 The directional derivatives θa are normalised such that ea(θb) = δa
b.
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[4] M. Hübscher, P. Meessen, T. Ort́ın and S. Vaulà, JHEP 0809 (2008) 099
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