60 research outputs found

    Contextual Priors Shape Action Understanding before and beyond the Unfolding of Movement Kinematics

    Get PDF
    Previous studies have shown that contextual information may aid in guessing the intention underlying others’ actions in conditions of perceptual ambiguity. Here, we aimed to evaluate the temporal deployment of contextual influence on action prediction with increasing availability of kinematic information during the observation of ongoing actions. We used action videos depicting an actor grasping an object placed on a container to perform individual or interpersonal actions featuring different kinematic profiles. Crucially, the container could be of different colors. First, in a familiarization phase, the probability of co-occurrence between each action kinematics and color cues was implicitly manipulated to 80% and 20%, thus generating contextual priors. Then, in a testing phase, participants were asked to predict action outcome when the same action videos were occluded at five different timeframes of the entire movement, ranging from when the actor was still to when the grasp of the object was fully accomplished. In this phase, all possible action–contextual cues’ associations were equally presented. The results showed that for all occlusion intervals, action prediction was more facilitated when action kinematics deployed in high- than low-probability contextual scenarios. Importantly, contextual priors shaped action prediction even in the latest occlusion intervals, where the kinematic cues clearly unveiled an action outcome that was previously associated with low-probability scenarios. These residual contextual effects were stronger in individuals with higher subclinical autistic traits. Our findings highlight the relative contribution of kinematic and contextual information to action understanding and provide evidence in favor of their continuous integration during action observation

    Contextual expectations shape the motor coding of movement kinematics during the prediction of observed actions: A TMS study

    Get PDF
    Contextual information may shape motor resonance and support intention understanding during observation of incomplete, ambiguous actions. It is unclear, however, whether this effect is contingent upon kinematics ambiguity or contextual information is continuously integrated with kinematics to predict the overarching action intention. Moreover, a differentiation between the motor mapping of the intention suggested by context or kinematics has not been clearly demonstrated. In a first action execution phase, 29 participants were asked to perform reaching-to-grasp movements towards big or small food objects with the intention to eat or to move; electromyography from the First Dorsal Interosseous (FDI) and Abductor Digiti Minimi (ADM) was recorded. Depending on object size, the intentions to eat or to move were differently implemented by a whole-hand or a precision grip kinematics, thus qualifying an action-muscle dissociation. Then, in a following action prediction task, the same participants were asked to observe an actor performing the same actions and to predict his/her intention while motor resonance was assessed for the same muscles. Of note, videos were interrupted at early or late action phases, and actions were embedded in contexts pointing toward an eating or a moving intention, congruently or incongruently with kinematics. We found greater involvement of the FDI or ADM in the execution of precision or whole-hand grips, respectively. Crucially, this pattern of activation was mirrored during observation of the same actions in congruent contexts, but it was cancelled out or reversed in the incongruent ones, either when videos were interrupted at either early or long phases of action deployment. Our results extend previous evidence by showing that contextual information shapes motor resonance not only under conditions of perceptual uncertainty but also when more informative kinematics is available

    Excitatory cerebellar transcranial direct current stimulation boosts the leverage of prior knowledge for predicting actions

    Get PDF
    The cerebellum causally supports social processing by generating internal models of social events based on statistical learning of behavioral regularities. However, whether the cerebellum is only involved in forming or also in using internal models for the prediction of forthcoming actions is still unclear. We used cerebellar transcranial Direct Current Stimulation (ctDCS) to modulate the performance of healthy adults in using previously learned expectations in an action prediction task. In a first learning phase of this task, participants were exposed to different levels of associations between specific actions and contextual elements, to induce the formation of either strongly or moderately informative expectations. In a following testing phase, which assessed the use of these expectations for predicting ambiguous (i.e. temporally occluded) actions, we delivered ctDCS. Results showed that anodic, compared to sham, ctDCS boosted the prediction of actions embedded in moderately, but not strongly, informative contexts. Since ctDCS was delivered during the testing phase, that is after expectations were established, our findings suggest that the cerebellum is causally involved in using internal models (and not just in generating them). This encourages the exploration of the clinical effects of ctDCS to compensate poor use of predictive internal models for social perception

    Neurorestorative effects of cerebellar transcranial direct current stimulation on social prediction of adolescents and young adults with congenital cerebellar malformations

    Get PDF
    Background: Converging evidence points to impairments of the predictive function exerted by the cerebellum as one of the causes of the social cognition deficits observed in patients with cerebellar disorders. Objective: We tested the neurorestorative effects of cerebellar transcranial direct current stimulation (ctDCS) on the use of contextual expectations to interpret actions occurring in ambiguous sensory sceneries in a sample of adolescents and young adults with congenital, non-progressive cerebellar malformation (CM). Methods: We administered an action prediction task in which, in an implicit-learning phase, the probability of co-occurrence between actions and contextual elements was manipulated to form either strongly or moderately informative expectations. Subsequently, in a testing phase, we probed the use of these contextual expectations for predicting ambiguous (i.e., temporally occluded) actions. In a sham-controlled, within-subject design, participants received anodic or sham ctDCS during the task. Results: Anodic ctDCS, compared to sham, improved patients’ ability to use contextual expectations to predict the unfolding of actions embedded in moderately, but not strongly, informative contexts. Conclusions: These findings corroborate the role of the cerebellum in using previously learned contextual associations to predict social events and document the efficacy of ctDCS to boost social prediction in patients with congenital cerebellar malformation. The study encourages the further exploration of ctDCS as a neurorestorative tool for the neurorehabilitation of social cognition abilities in neurological, neuropsychiatric, and neurodevelopmental disorders featured by macro- or micro-structural alterations of the cerebellum

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    The COGs (context, object, and goals) in multisensory processing

    Get PDF
    Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications

    Peripersonal space representation develops independently from visual experience

    Get PDF
    Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice

    Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism.

    Get PDF
    Hypoxia and bacterial infection frequently co-exist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both S. aureus and S. pneumoniae infections rapidly induced progressive neutrophil mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning animals through longer exposures to hypoxia, prior to infection, prevented these pathophysiological responses and profoundly dampened the transcriptome of circulating leukocytes. Specifically, perturbation of HIF pathway and glycolysis genes by hypoxic preconditioning was associated with reduced leukocyte glucose utilisation, resulting in systemic rescue from a global negative energy state and myocardial protection. Thus we demonstrate that hypoxia preconditions the innate immune response and determines survival outcomes following bacterial infection through suppression of HIF-1α and neutrophil metabolism. The therapeutic implications of this work are that in the context of systemic or tissue hypoxia therapies that target the host response could improve infection associated morbidity and mortality.This work was supported by the Medical Research Council (MRC) Clinical Training Fellowship (awards G0802255 and MR/K023845/1 to A.A.R.T. and R.S.D., respectively), a National Institute for Health Research (NIHR) Clinical Lectureship and an Academy of Medical Sciences starter grant (to A.A.R.T.), a Wellcome Trust postdoctoral clinical fellowship (110086 to A.M.), a Wellcome Trust Senior Clinical Fellowship award (098516 to S.R.W.), a Wellcome Trust Senior Clinical Fellowship award (076945 to D.H.D.), a British Lung Foundation Fellowship (F05/7 to H.M.M.), a Wellcome Trust New Investigator Award (WT100981MA to N.M.M.), and a British Heart Foundation Senior Basic Science Research Fellowship (FS/13/48/30453 to A.L.). E.R.C. and A.S.C. are supported by the NIHR Cambridge Biomedical Research Centre. R.H.S. is supported by the MRC. R.R.M. is supported by MRC (MC_PC_U127574433), Biotechnology and Biological Sciences Research Council, and European Chemical Industry Council grants. M.M. is supported by the European Research Council (OxyMO). The MRC/University of Edinburgh Centre for Inflammation Research is supported by an MRC Centre Grant
    corecore