799 research outputs found

    On entanglement evolution across defects in critical chains

    Get PDF
    We consider a local quench where two free-fermion half-chains are coupled via a defect. We show that the logarithmic increase of the entanglement entropy is governed by the same effective central charge which appears in the ground-state properties and which is known exactly. For unequal initial filling of the half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde

    On the continuum limit of the entanglement Hamiltonian

    Get PDF
    We consider the entanglement Hamiltonian for an interval in a chain of free fermions in its ground state and show that the lattice expression goes over into the conformal one if one includes the hopping to distant neighbours in the continuum limit. For an infinite chain, this can be done analytically for arbitrary fillings and is shown to be the consequence of the particular structure of the entanglement Hamiltonian, while for finite rings or temperatures the result is based on numerical calculations

    Entanglement evolution after connecting finite to infinite quantum chains

    Full text link
    We study zero-temperature XX chains and transverse Ising chains and join an initially separate finite piece on one or on both sides to an infinite remainder. In both critical and non-critical systems we find a typical increase of the entanglement entropy after the quench, followed by a slow decay towards the value of the homogeneous chain. In the critical case, the predictions of conformal field theory are verified for the first phase of the evolution, while at late times a step structure can be observed.Comment: 15 pages, 11 figure

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    Entanglement in the XX spin chain with an energy current

    Get PDF
    We consider the ground state of the XX chain that is constrained to carry a current of energy. The von Neumann entropy of a block of LL neighboring spins, describing entanglement of the block with the rest of the chain, is computed. Recent calculations have revealed that the entropy in the XX model diverges logarithmically with the size of the subsystem. We show that the presence of the energy current increases the prefactor of the logarithmic growth. This result indicates that the emergence of the energy current gives rise to an increase of entanglement.Comment: 4 pages, 4 figure

    Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems

    Get PDF
    We study the evolution of one-dimensional quantum lattice systems when the ground state is perturbed by altering one site in the middle of the chain. For a large class of models, we observe a similar pattern of entanglement growth during the evolution, characterized by a moderate increase of significant Schmidt coefficients in all relevant bipartite decompositions of the state. As a result, the evolution can be accurately described by a matrix product state and efficiently simulated using the time-evolving block decimation algorithm.Comment: 6 pages, 5 figure

    Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States

    Full text link
    We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent and thermal quantities in quantum systems. For time-dependent systems, we modify a previous mapping to quantum circuits to significantly reduce the computer resources required. This modification is based on a principle of "observing" the system outside the light-cone. We apply this method to study spin relaxation in systems started out of equilibrium with initial conditions that give rise to very rapid entanglement growth. We also show that it is possible to approximate time evolution under a local Hamiltonian by a quantum circuit whose light-cone naturally matches the Lieb-Robinson velocity. Asymptotically, these modified methods allow a doubling of the system size that one can obtain compared to direct simulation. We then consider a different problem of thermal properties of disordered spin chains and use quantum belief propagation to average over different configurations. We test this algorithm on one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds, where we can compare to quantum Monte Carlo, and then we apply it to the study of disordered, frustrated spin systems.Comment: 19 pages, 12 figure

    Evolution of entanglement after a local quench

    Full text link
    We study free electrons on an infinite half-filled chain, starting in the ground state with a bond defect. We find a logarithmic increase of the entanglement entropy after the defect is removed, followed by a slow relaxation towards the value of the homogeneous chain. The coefficients depend continuously on the defect strength.Comment: 14 pages, 9 figures, final versio

    Fluctuations in subsystems of the zero temperature XX chain: Emergence of an effective temperature

    Full text link
    The zero-temperature XX chain is studied with emphasis on the properties of a block of LL spins inside the chain. We investigate the quantum fluctuations resulting from the entanglement of the block with the rest of the chain using analytical as well as numerical (density matrix renormalization group) methods. It is found that the rest of the chain acts as a thermal environment and an effective temperature can be introduced to describe the fluctuations. We show that the effective temperature description is robust in the sense that several independent definitions (through fluctuation dissipation theorem, comparing with a finite temperature system) yield the same functional form in the limit of large block size (LL\to\infty). The effective temperature can also be shown to satisfy the basic requirements on how it changes when two bodies of equal or unequal temperatures are brought into contact.Comment: 19 pages, 7 figure
    corecore