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On entanglement evolution across defects in critical chains
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We consider a local quench where two free-fermion half-chains are coupled via a defect.

We show that the logarithmic increase of the entanglement entropy is governed by the same

effective central charge which appears in the ground-state properties and which is known

exactly. For unequal initial filling of the half-chains, we determine the linear increase of the

entanglement entropy.

I. INTRODUCTION

The entanglement across defects in critical quantum chains is interesting, because in free-fermion

systems it varies continuously with the defect strength [1]. For two half-chains of length L, one

finds a logarithmic behaviour of the von Neumann entanglement entropy

S =
ceff
6

lnL (1)

where 0 ≤ ceff ≤ c with c (equal to 1/2 or 1) denoting the central charge of the model. Since eS ,

which is the effective number of terms in the Schmidt decomposition, then follows a power law,

one can view ceff as a variable critical exponent. It was studied in a number of papers for discrete

[1–5] and continuous [6–8] systems and an exact analytical formula was obtained [3], also for the

Rényi entropy [7, 10] and for bosons [9, 10]. Technically, the variation is caused by a gap in the

single-particle eigenvalue spectrum of the reduced density matrix (RDM) and the relevant physical

parameter is the transmission amplitude of the defect.

A similar situation is found if one considers a local quench where one connects two initially

separated half-chains by a defect. The entanglement entropy then increases in time as

S =
ĉeff
3

ln t (2)

as long as t ≪ L for finite L and for all times if L is infinite. This was found either purely

numerically [2] or by evaluating expressions based on the counting statistics numerically [11–13].
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No explicit formulae for ĉeff have been given so far. However, it was observed in the numerics of

the transverse Ising model that ĉeff equals ceff , as in the the homogeneous case, where the same c

appears in (1) and (2) and the formulae follow from conformal considerations [14].

In this note, we look at this problem once again and study the evolution after the quench for an

XX (hopping) model via the time-dependent single-particle RDM eigenvalues. We show that those

for the defect case are related by a simple exact formula to those for the homogeneous case, if the

defect is conformal (i.e. scale-free). The relation is the same as in the static case and thus implies

again a gap in the spectrum. This allows to take over the ground-state results and thereby proves

the equality of ceff and ĉeff . Since ceff is exactly known, it also provides an analytical formula for

ĉeff . One can check that it fully agrees with the expressions and results of the counting statistics.

We also consider the case where the initial filling of the two half-chains is different. Then a

somewhat different relation for the spectra exists where the effect of backscattering is manifest.

The current which sets in after the quench leads to a steady generation of entanglement between

transmitted and reflected parts of the wavefunction and thus to a linear increase of the entropy with

time. We give analytical expressions for the coefficient both for conformal and for non-conformal

defects.

II. MODEL AND METHOD

We study free fermions hopping on a finite open chain of 2L sites. The time evolution for t > 0

is governed by the Hamiltonian

H ′ =
1

2

2L
∑

m,n=1

H ′
m,nc

†
mcn (3)

where the nonzero matrix elements are

H ′
m,m+1 = H ′

m+1,m =







−1 m 6= L

−λ m = L
, H ′

L,L = −H ′
L+1,L+1 =

√

1− λ2 (4)

In the middle of the chain there is a defect in the form of a modified bond supplemented with site

energies on both sides and characterized by the parameter λ. It will be referred to as the conformal

defect and is used to derive all the exact relations. In addition, we will also consider simple bond

defects without site energies. The initial system is composed of two disconnected half-chains and

the initial state will be specified in the corresponding sections.

In the homogeneous case, λ = 1, the Hamiltonian (3) is diagonalized by a Fourier transform
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and the eigenvectors and eigenvalues are given by

φk(m) =

√

2

2L+ 1
sin

πkm

2L+ 1
, Ωk = − cos

πk

2L+ 1
(5)

where k = 1, . . . , 2L. For the conformal defect the solutions are related to those of the homogeneous

chain via

φ′
k(m) =







αkφk(m) 1 ≤ m ≤ L

βkφk(m) L < m ≤ 2L
, Ω′

k = Ωk (6)

and thus the eigenvectors are simply rescaled on the left and right hand side of the defect with the

scaling factors

α2
k = 1 + (−1)k

√

1− λ2, β2
k = 1− (−1)k

√

1− λ2 (7)

Note that, apart from the alternation, αk and βk are independent of k and lead to a constant

transmission coefficient T = λ2. Therefore one has here a lattice realization of the special scale-

free defects which can be constructed by gluing together two conformal field theories [10, 15]. The

bond defect is non-conformal and leads to a transmission which depends on the wavelength of the

incoming particle.

For the entanglement between left and right halves, one needs the RDM for a half-chain which

has the form ρ = e−H/Z with a free-fermion effective Hamiltonian H, see [16]. In the following,

the single-particle eigenvalues of H will be called 2ωl(t). They are related via

ζ ′l(t) =
1

e2ωl(t) + 1
(8)

to the eigenvalues of the correlation matrix C′(t) which is the full matrix C̄′(t) with elements

〈c†m(t)cn(t)〉 restricted to 1 ≤ m,n ≤ L. For λ = 1, the quench will be called homogeneous and the

corresponding quantities are denoted by 2εl(t), ζl(t) and C(t), respectively.

Therefore one has to find the time-dependent correlation matrix which can be written in the

Heisenberg form

C̄′(t) = eiH̄
′tC̄(0)e−iH̄′t (9)

where H̄′ denotes the matrix with elements H ′
m,n and C̄(0) contains the initial correlations. The

entanglement entropy is then given by

S(t) =
∑

l

ln(1 + e−2ωl(t)) +
∑

l

2ωl(t)

e2ωl(t) + 1
=

∑

l

H(ζ ′l(t)) (10)

where H(x) = −x lnx− (1− x) ln(1− x). The first (second) form proves to be useful for quenches

from equal (unequal) fillings.
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III. QUENCH FROM EQUAL FILLINGS

In this case, the initial correlation matrix has the block form

C̄(0) =





C0 0

0 C0



 (11)

where the L× L matrix C0 refers to a half-chain in the ground state and has elements

C0
mn =

L
∑

k=1

φ0
k(m)φ0

k(n)nk (12)

Here nk is the occupation number of mode k and the wavefunctions φ0
k(m) have the form (5) with

2L replaced by L. To evaluate (9) one expresses the exponential operators as

(

e±iH̄′t
)

mn
=

2L
∑

k=1

φ′
k(m)φ′

k(n)e
±iΩkt (13)

Using (6), defining the overlap matrix

Bkl =

L
∑

j=1

φk(j)φ
0
l (j) = (−1)(k+l)

2L
∑

j=L+1

φk(j)φ
0
l (j − L) (14)

and noting that αkαk′ + (−1)k+k′βkβk′ = 2 for k − k′ even and zero otherwise, one arrives at

C ′
mn(t) = 2

2L
∑

k,k′=1
k−k′even

L
∑

k′′=1

αkαk′Bkk′′Bk′k′′φk(m)φk′(n)nk′′e
i(Ωk−Ω

k′
)t (15)

The only dependence on the defect strength λ is in the factors αkαk′ . The point now is that one can

find a simple connection with the homogeneous quench if one considers the matrix (2C′(t) − 1)2.

Then a further overlap matrix appears with elements

Akl =

L
∑

j=1

φk(j)φl(j) =
1

2(2L+ 1)





sin π
2 (k − l)

sin π(k−l)
2(2L+1)

− sin π
2 (k + l)

sin π(k+l)
2(2L+1)



 (16)

which, apart from the diagonal ones, vanish for k − l even. The matrix elements of (2C′(t) − 1)2

are 6-fold sums where each summand is proportional to αkαk′αlαl′Ak′l with k− k′ and l− l′ even.

For k′− l odd, this gives αkαk′αlαl′ = λ2 and thus a simple prefactor. For k′ = l, one has All = 1/2

and a summand

αkα
2
l αl′Bkk′′Blk′′Bll′′Bl′l′′φk(m)φl′(n)(2nk′′ − 1)(2nl′′ − 1)ei(Ωk−Ω

l′
)t (17)



5

where αkα
2
l αl′ = 2− λ2 + (−1)l2

√
1− λ2 for the allowed indices. The remaining sums can then be

evaluated using the identities

2L
∑

l=1

Blk′′Bll′′ = δk′′l′′ ,

2L
∑

l=1

(−1)lBlk′′Bll′′ = 0,

L
∑

k′′=1

Bkk′′Bl′k′′ = Akl′ (18)

Summing over l therefore eliminates the alternating terms and enforces k′′ = l′′ which leads to

(2nk′′ − 1)2 = 1 independent of k′′ and of the filling. The final sum over k gives (1− λ2/2)δmn. In

this way one arrives at the formula

(2C′(t)− 1)2mn = λ2(2C(t)− 1)2mn + (1− λ2)δmn (19)

As a consequence, the single-particle eigenvalues of the corresponding RDMs are related by

tanh2 ωl(t) = λ2 tanh2 εl(t)+1−λ2, or alternatively, writing λ = s for the transmission amplitude,

by

chωl(t) =
1

s
ch εl(t) (20)

This is exactly the same relation one finds for the static defect problem [3] and gives a gap in the

ωl-spectrum. Note that (19) can also be written as C′(t)(1−C′(t)) = λ2C(t)(1−C(t)) and is then

identical to the relation for the overlap matrix A in a (static) continuum system [6–8].
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FIG. 1: Low-lying eigenvalues 2εl(t) after homogeneous local quench with 2L = 400 (points) and 2εl(ℓ) of

an interval in an infinite system (lines). The data is shown for even ℓ and for half-filling.

The problem is now reduced to that of the homogeneous quench, but one still needs the εl(t).

The known results give a logarithmic behaviour of S(t) with a prefactor 1/3 that is similar to the

scaling of the equilibrium entropy of an interval ℓ in an infinite chain [14]. In the static case, one

knows that the low-lying εl(ℓ) have a spacing π2/2 ln ℓ for large ln ℓ [17]. This gives a density of
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states proportional to ln ℓ and the logarithmic variation of S(ℓ). The similarity of the conformal

results for the entropy suggests that the εl(t) have an analogous behaviour. This is in fact the

case and is shown in Fig. 1. Plotted are the lowest εl(t) in a homogeneous quench together with

the lowest εl(ℓ) for a segment of length ℓ in an infinite chain. Apart from some oscillations, they

coincide closely.

With this observation, one can now follow the same steps as in the static case and write S in

(10) as an integral over ε. In this way one finds ĉeff = ceff , where ceff is 12/π2 times the integral

I(s) given in (26) of [3]. It is depicted on Fig. 2, both as a function of s and T = s2, to allow

simple comparison with the numerical results of [11]. The function is nonanalytic around s = 0.

For the simple bond defect, one knows from the static case that the parameter s is the transmission

amplitude at the Fermi level. The relation between ω and ε is then only valid as the levels become

dense.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

T , s
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FIG. 2: ĉeff as a function of s (solid line) as well as T = s2 (dashed line).

IV. QUENCH FROM UNEQUAL FILLINGS

If the initial fillings are unequal, a steady particle-current results after connecting the half-

chains. In the homogeneous case, the time evolution of the density profile [18], the particle number

fluctuations in a half-chain [19] as well as the entanglement entropy [20] have been studied previ-

ously. The fluctuations and the entropy both grow logarithmically in time.

We first consider the case where the left hand side of the chain is completely filled and the right

hand side is empty. The initial correlation matrix then reads

C̄(0) =





1 0

0 0



 (21)
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where 1 denotes the L× L identity matrix. Expanding into eigenvectors one has

C ′
mn(t) =

2L
∑

k,l=1

α2
kα

2
l φk(m)Aklφl(n)e

i(Ωk−Ωl)t = λ2Cmn(t) + (1− λ2)δmn (22)

where in the second step we used the property α2
kα

2
l = λ2 for all k − l odd, where the overlap

matrix A is nonvanishing. For k = l, the alternating piece in α4
k gives zero upon summation and

the constant piece leads to the second term on the right hand side. Remarkably, one finds the same

relation as in Eq. (19) but now for the correlation matrix itself and thus also for its eigenvalues

ζ ′l(t) = λ2ζl(t) + 1− λ2 (23)

The eigenvalues ζ ′l(t) and ζl(t) are shown on the left of Fig. 3 and have a simple interpretation.

As the half-chains are connected, particles leave the left part of the system and a steady current

results. In the pure case, this implies a growing number of ζl(t) = 0 eigenvalues. In the presence

of a defect, however, there is a probability R = 1 − T for backscattering and the corresponding

eigenvalues are ζ ′l(t) = 1 − λ2 = R. It is interesting to compare with the case of a simple bond

defect, which is done on the right of Fig. 3. Here such a simple relation as (23) does not hold,

since the transmission coefficient depends on the momentum q of the particle as

Tq =
sin2 q

ch 2ν − cos2 q
(24)

where we defined λ = e−ν and 0 ≤ q ≤ π. Because of this variation, the ζ ′l(t) curves are not flat.
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FIG. 3: Eigenvalues ζl(t) (open symbols) and ζ′
l
(t) (filled symbols) for different times and 2L = 200 sites.

Left: conformal defect. Right: bond defect.

The common feature of both defects is that the number of nonzero ζ ′l(t) eigenvalues, which have

a finite contribution to the entropy, grows with time proportionally to the number of transmitted
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particles. Because of the steady flux in the center of the chain, this results in a linear contribution

to the entanglement. Numerically, this can be observed even for coupling strengths arbitrarily

close to λ = 1, where the entropy becomes logarithmic, S ∼ 1/6 log t [20]. In general, S can be

well fitted with the ansatz

S(t) = αt+ β ln t+ γ (25)

and the coefficients are shown in Fig. 4. In the conformal case, the linear part can be calculated,

using the second form of the entropy in Eq. (10), as H(λ2) t/π. This is just the contribution of a

single ζ ′l(t) on the flat part of the spectrum multiplied by the length of the plateau, which equals

the total number t/π of transmitted particles in the homogeneous case [18]. This result, shown by

the solid line on the left of the Fig. 4, agrees perfectly with the fitted values of α. Furthermore, it

also agrees with the results of [11–13] for the entropy evolution in a quantum point contact in the

high-bias regime.
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FIG. 4: Fitted coefficients of the ansatz S(t) = αt+β ln t+γ together with the analytical formulas obtained

for the slope α. Left: conformal defect. Right: bond defect.

In the non-conformal case, the linear growth of the entropy can be obtained by distinguishing the

different momentum states and associating a factor H(Tq) with the entanglement which is produced

between transmitted and reflected parts of the wavefunction. Thus one writes for L → ∞

α =

∫ π

0

dq

2π
vq H(Tq) (26)

where vq = dΩq/dq = sin q is the velocity of the incoming particle and measures the flux. For the

conformal defect where T = λ2 one obtains the previous result. For the bond defect, the integral

can be carried out by substituting Eq. (24) and using Tq as integration variable. A lengthy
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calculation then yields α = I(s)/π with

I(s) = ln

(

1− s2

4s2

)

− 1

s
ln

(

1− s

1 + s

)

+
1− s2

s

[

1

4
ln2

(

1− s

1 + s

)

+ Li2

(

1− s

1 + s

)

− π2

6

]

(27)

where Li2(s) denotes the dilogarithm function and s = 1/ch ν = 2/(λ+1/λ) is the same amplitude

that appears in the equilibrium formulae. This analytical result is again in perfect agreement with

the results of the data fits, as shown on the right of Fig. 4.

Note, that the structure of Eq. (26) is very similar to the one found by Fagotti and Calabrese

for a global quench in the XY model [21]. However, in the present case entanglement is created

only locally (but steadily) at the defect, in contrast with the global quench where entangled quasi-

particle pairs are created everywhere but only at t = 0 [22]. It would be interesting to check if this

semiclassical picture can be used to calculate other relevant observables as was found recently for

the global quench [23, 24].

The above arguments can be generalized to arbitrary initial filling factors nl and nr on the

left and right. Assuming nl > nr, the single-particle states with q < nrπ will be filled and thus

balanced on both sides. In terms of the ζ ′l(t), the number of eigenvalues on the flat part of the

spectrum decreases and one has a more general relation which interpolates between (23) and (20).

In the semiclassical picture only wavenumbers nrπ < q < nlπ will contribute to the current and

the integral in Eq. (26) has to be carried out only on this interval. As shown in Fig. 5, this gives

again very good agreement with the numerical data, further supporting the semiclassical picture

described above. It is possible to evaluate the integral analytically also in this case.
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FIG. 5: Slope α of the linear part of the entropy for several filling factors as obtained by fits to the data

(points) as well as evaluating the integrals (lines)
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V. CONCLUDING REMARKS

There is a close connection of our findings with the work on counting statistics by Klich and

Levitov [11]. For the quench with equal fillings, they obtain a density of states for the eigenvalues

ζ ′ which vanishes in an interval around ζ ′ = 1/2. Thus the spectrum has a gap, and this is just the

situation described by (20). Moreover, if one converts their entropy expression (10) into an integral

over ε one finds exactly the integral for ceff evaluated in [3]. Finally, the relation between their

parameters λ and λ∗ is another form of the dispersion relation (20) derived here. Our approach,

focussing on the eigenvalues themselves, is more direct and shows the connection with the static

defect problem very clearly. The only open point is an analytical derivation of the εl(t)-behaviour,

which we inferred from conformal results and numerics.

In this context one should mention that we discussed only the case t ≪ L. The general CFT

formula for the homogeneous quench is [25]

S(t) =
c

3
ln

∣

∣

∣

∣

2L

π
sin

πvF t

2L

∣

∣

∣

∣

+ const. (28)

where the Fermi-velocity vF is set by the filling of the half-chains. This results again from the

scaling of the εl(t) with the logarithmic factor and the formula for the defect case is obtained by

substituting c → ceff .

The relation ĉeff = ceff also holds for the corresponding coefficients in the Rényi entropies Sn

which are rather simple for S2 and S3 [7, 10]. Similarly, the considerations for the biased quench

can be adapted to the Rényi functions.

Finally, a quench from unequal fillings also arises in continuum models if one removes a wall

which initially confines the particles. A detailed study of the entanglement evolution has appeared

recently [26] and can probably be extended to the defect case.
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