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We study the evolution of one-dimensional quantum lattice systems when the ground state is perturbed by
altering one site in the middle of the chain. For a large class of models, we observe a similar pattern of
entanglement growth during the evolution, characterized by a moderate increase of significant Schmidt coef-
ficients in all relevant bipartite decompositions of the state. As a result, the evolution can be accurately
described by a matrix product state and efficiently simulated using the time-evolving block decimation
algorithm.
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I. INTRODUCTION

The numerical study of quantum many-body systems is a
challenging computational task due to the exponential
growth of the Hilbert space dimension with the system’s
size. Lattice systems in one spatial dimension, such as quan-
tum spin chains, are a noticeable exception. There, the den-
sity matrix renormalization group �DMRG� algorithm allows
for the precise computation of ground state properties �1�,
while the time-evolving block decimation �TEBD� algorithm
can be used to simulate time evolution �2,3�. Such techniques
provide valuable insight into quantum systems, therefore fa-
cilitating progress in several forefront areas of research, both
in science—e.g., condensed matter, quantum optics, atomic
and nuclear physics, quantum chemistry—and technology—
e.g., quantum information processing, quantum computation,
nanotechnology.

Many-body entanglement is at the very core of the
achievements of the DMRG and TEBD algorithms. In both
cases, a key ingredient is the use of a matrix product state
�MPS� to represent the state ��� of the system �4�. A MPS
leads to an efficient representation of ��� provided that the
amount of entanglement in the system is sufficiently small.
Thus the success of the DMRG relies on the remarkable fact
that in one spatial dimension the ground state of most local
Hamiltonians has only a limited amount of entanglement.
Likewise, the TEBD algorithm, based on updating the MPS
in time, is efficient as long as no large amounts of entangle-
ment are produced during the simulated evolution.

Identifying time evolutions that only involve small
amounts of entanglement is, consequently, of central impor-
tance in order to establish the range of applicability of the
TEBD algorithm—and of a whole score of subsequent pro-
posals �5–8�, including implementations within the DMRG
formalism �6–8� often referred to as tDMRG, that are based
on the same idea, namely on adapting the MPS representa-
tion of the state of the system, so as to account for its
changes during a time evolution. At the same time, a better
understanding of the dynamics of entanglement in one-
dimensional many-body systems �9� is of interest in the areas
of quantum-information processing, where entanglement is
regarded as a useful resource, and of quantum computation,
where entanglement is necessary in order to achieve a sig-
nificant speed-up with respect to classical computers �2,10�.

In this paper we study the generation of entanglement in a
particularly relevant class of time evolutions. Specifically,

we consider a chain of N sites, where each site is represented
by a finite-dimensional Hilbert space and labeled by s �s
=1, . . . ,N�. The system, initially prepared in the ground state
��GS� of some local Hamiltonian H, is perturbed at time t
=0 by applying an operator A on lattice site s0. As a result,
the state of the system ���0���As0��GS�, no longer an
eigenstate of H, evolves nontrivially in time, see, e.g., Fig. 1,

���t�� � e−iHt���0�� = e−iHtAs0��GS� . �1�

During this evolution entanglement is produced, adding to
the entanglement that might already be present in the ground
state.

Notice that state ���t�� appears in the computation of the
unequal time correlation function

�Bs�t�As0�0�� � ��GS�eiHtBse−iHtAs0��GS�

= eiE0t��GS�Bs���t�� , �2�

where a second operator B has been applied on site s at time
t. Therefore, by characterizing the growth of entanglement in
evolution �1�, we will be able to assess the efficiency with
which the algorithms of Refs. �2,3,5–8� can be used to com-
pute the two-point correlator �2�. We recall that from this
correlator one can extract quantities such as Green’s func-
tions or dynamic structure factors, and thus learn about a
number of properties of the system, including its response to
external probes, e.g., neutron or photon scattering.

The study of the entanglement and stimulability of a time
evolution of the form �1� was initiated in Ref. �3� and is
intimately related to the development of the TEBD algo-
rithm. Originally, the TEBD algorithm was created in order
to characterize the role of entanglement in quantum compu-
tation �2�. Soon afterward it was noticed that, for systems in
one spatial dimension, low energy time evolutions such as
Eq. �1� seemed to often involve small amounts of entangle-
ment �3�, precisely in the way that would allow the TEBD
algorithm to work efficiently. This opened up the possibility
to simulate this class of dynamics. One may claim, a poste-
riori, that it is somehow expected that no such entanglement
will be created when a single local perturbation is introduced
on the ground state ��GS� of H. However, the subject is far
from being well-understood and, for instance, given H and
local operator A, there are no known conditions to guarantee
that the evolution can be simulated efficiently for reasonably

PHYSICAL REVIEW A 78, 042337 �2008�

1050-2947/2008/78�4�/042337�6� ©2008 The American Physical Society042337-1

http://dx.doi.org/10.1103/PhysRevA.78.042337


long times. The best result in this direction, due to Osborne
�11�, shows that time evolutions in one spatial dimension can
be simulated efficiently �that is, with polynomial resources in
N� only up to small times t	 log�N�. Instead, numerics sug-
gest that the simulation of Eq. �1� can be performed effi-
ciently for times that scale at least as the size of the system,
t	N �3,8�.

Several authors �see, for instance, �3,6,12–15�� have al-
ready considered particular instances of evolution ensuing
either a local perturbation of the ground state as in Eq. �1�,
or a local quench �which is qualitatively equivalent to a local
perturbation�. In these specific cases it has been observed
that, indeed, the amount of entanglement remains sufficiently
small as to allow practical simulations for large times and
system sizes �in a sense further specified in the next section�.
The goal of the present paper is to establish how general this
result is by conducting a systematic numerical study of evo-
lutions of the form �1� in one-dimensional models, including:
�i� systems of spins, fermions, and bosons; �ii� gapped and
gapless phases; �iii� homogeneous and disordered interac-
tions; and �iv� integrable and nonintegrable systems. We find
that, whereas for each model the evolution may represent a
very different physical process, in all cases the dynamics of
entanglement, remarkably similar, are characterized by a
moderate growth. As a result, the evolution can be simulated,
with reasonably modest computational resources, for times
long enough that the perturbation, initially localized, can
spread over large regions, involving, e.g., of the order of 100
sites.

We notice that the TEBD algorithm has also been applied
to other classes of evolution. In the case of a global quench
that modifies the Hamiltonian everywhere in the chain, or
when the initial state of the system does belong to the low

energy sector of H, it has been reported that a large amount
of entanglement is created �16,17� and therefore the simula-
tion becomes inefficient. We emphasize that this is not at all
surprising, given the exponentially large dimension of the
Hilbert space in the system size, which implies that a generic
state of the system cannot be represented efficiently. Instead,
what is truly remarkable �and useful for practical simula-
tions� is that there are circumstances of interest where the
state of the system can be efficiently encoded using a MPS.
Apart from the case of a local perturbation of the ground
state �local quench�, there are not many other classes of evo-
lution known that can be efficiently simulated for reasonably
large times. One noticeable exception is the case of a global
quench in a disordered system �17�, which seems to be re-
lated to localization effects experienced by information in the
presence of disorder �18�. Another case, perhaps less surpris-
ing but still potentially very useful, is the evolution of ob-
servables and of thermal states after a global quench in inte-
grable systems �19�.

The rest of the paper is organized as follows. In Sec. II we
introduce the measure of entanglement that is relevant in the
present context and describe the one-dimensional models we
have considered. In Sec. III we present the results of the
simulations. Specifically, we describe two cases that illus-
trate the two types of scaling of entanglement observed in all
the simulations we have performed. In Sec. IV we discuss
the previous results, including simple toy models that repro-
duce the entanglement scaling reported in Sec. III and
present some conclusions.

II. ENTANGLEMENT MEASURE
AND ONE-DIMENSIONAL MODELS

Our goal is to characterize the growth of entanglement
during the time evolution that takes place after the ground

(a)

(b)

FIG. 1. �Color online� Propa-
gation of a perturbation intro-
duced in the middle of a chain of
N=100 sites. This evolution cor-
responds to a Bose-Hubbard
model, Eq. �9�, in the Mott-
insulating phase �hopping term J
=0.1, on-site repulsion U=1, and
chemical potential �=0.5� with
one boson per site. �a� Expectation
value �nr� for the number operator
on each site, as a function of time,
after an extra boson is introduced
on site s0=50. The perturbation
propagates throughout the chain,
occupying a region that grows lin-
early in time until reaching the
boundaries. �b� The entanglement
entropy Sr shows how every bi-
partition remains almost disen-
tangled until the arrival of the
wave front. When the front has
gone far away, the entropy
saturates.
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state ��GS� of a one-dimensional �1D� system has been per-
turbed by some local operator A, Eq. �1�. In the present con-
text, an appropriate measure of the entanglement contained
in ���t�� is provided by the number � of terms in its Schmidt
decompositions �we refer to �2,3� for details�. More specifi-
cally, given a partition of the chain into two blocks contain-
ing the first r sites and the remaining N−r sites, respectively,
the Schmidt decomposition reads

���t�� = 

�=1

�r

��
r ���

1:r����
r+1:N� , �3�

where the rank �r, the Schmidt coefficients ��
r , and the

Schmidt bases ���
1:r� and ���

r+1:N� are all time dependent.
Equation �3� contains in principle a very large number of
terms, with �r�exp�N�. However, when the Schmidt coeffi-
cients ��

r decay fast with �, a good approximation to ���t��
may be obtained by keeping only a relatively small number
��

r of terms. The truncation introduces a small error � �20�,
given by

� � 1 − 

�=1

��
r

���
r �2. �4�

The exact and approximate ranks � and �� of ���t�� are then
defined by maximizing over bipartitions,

� � max
r

�r, �� � max
r

��
r . �5�

A MPS can store the truncated state using O�N��
2� coeffi-

cients, while the cost of simulating a time step scales as
O�N��

3�. Therefore �� is indicative of the computational re-
sources required in an approximate simulation with trunca-
tion error �. Although in an actual simulation there might be
other sources of errors, such as those due to Trotter expan-
sion �3�, and errors accumulate in time, the simple entangle-
ment measure �� turns out to be informative enough as to
allow us to assess in practice whether a simulation is effi-
cient.

We have considered a large number of quantum models
on a one-dimensional lattice. Our hope is that by studying
these models, we already observe all possible forms of scal-
ing of entanglement, as measured by ��, so that we can draw
conclusions that are valid for generic 1D systems—or at least
for those 1D systems that are usually of interest in condensed
matter physics and quantum statistical mechanics. The spe-
cific models we have considered are as follows.

�1� The quantum Ising model with parallel and transverse
magnetic fields

HIsing = 

r

	x
r	x

r+1 + 

r

�hx	x
r + hz	z

r� , �6�

where hx and hy are the intensity of uniform magnetic fields
in the x �parallel� and z �perpendicular� directions. For hx
=0, a Jordan-Wigner transformation maps this quantum spin
model �with spin 1

2 � into a model of free spinless fermions.

�2� The quantum XY model with transverse magnetic field

HXY = 

r
�1 + 


2
	x

r	x
r+1 +

1 − 


2
	y

r	y
r+1 + hz

r	z
r , �7�

where 
 is the anisotropy parameter and hz
r the intensity of a

�possibly site-dependent� transverse magnetic field. For 

=1 we recover the quantum Ising model with transverse
magnetic field, whereas 
=0 corresponds to the quantum XX
model, which is also used as a model of hard-core bosons.
Again, a Jordan-Wigner transformation maps this quantum
spin model �with spin 1

2 � into a model of free spinless fermi-
ons.

�3� The quantum XXZ model with magnetic field in the z
direction

HXXZ = 

r

�	x
r	x

r+1 + 	y
r	y

r+1 + �	z
r	z

r+1 + hz
r	z

r� , �8�

where � is the anisotropy parameter and hz
r the intensity of a

�possibly site-dependent� magnetic field in the z direction.
For �=0 we recover the XX model, for �=1 a spin-1

2
Heisenberg quantum antiferromagnet and for �=−1 a model
locally equivalent to a spin-1

2 Heisenberg quantum ferromag-
net. Through a Jordan-Wigner transformation HXXZ becomes
a model of interacting spinless fermions.

�4� The Bose-Hubbard model

HBH = 

s

�− J�b†sbs+1 + H.c.� − �ns + Uns�ns − 1�� , �9�

a model of interacting bosons where J is the hopping ampli-
tude; � is the chemical potential, U is the on-site repulsion;
and b†s, bs, and ns=b†sbs are the bosonic creation, annihila-
tion, and number operators at site s, respectively.

For all the above models we have considered gapped and
gapless cases. For the XY and XXZ models we have consid-
ered, in addition to uniformed magnetic fields, disordered
versions by introducing inhomogeneous, random magnetic
fields hz

r.

III. RESULTS

We have simulated time evolutions of the form �1� for
each of the variants of the models �6�–�9� of the previous
section for chains with open boundary conditions and with a
number N ranging from 100 to 200. After computing the
ground state ��GS� of a given Hamiltonian H through a simu-
lation of imaginary time evolution �3�, at t=0 an operator A
is applied to the middle of the chain. The system is then
allowed to evolve according to the time evolution operator
e−iHt, which results in a propagation of the perturbation from
the center of the chain toward its ends. We stop the simula-
tions before the signal reaches the boundary of the chain.
Chains of different lengths have been simulated in order to
guarantee that our results are essentially independent of the
system’s size. Convergence of the results in this sense is only
possible in those models where the correlation length is suf-
ficiently smaller than the system’s size. We notice that sys-
tems at or very close to a quantum critical point fail to fulfill
this condition. Also, the simulations have been performed
with a MPS of rank �* much larger than the reported ��, in
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order to guarantee that our analysis is independent of the
computational resources devoted to the numerical simulation
used to obtain them. Specifically, we report results for ��
�35 which have been obtained by simulating the evolution
with a MPS with �*=80, 100, and 150.

The evolution in all simulations has been carried out with
a fourth-order Trotter expansion �labeled as Z4

1 in �22�� with
a time step t=0.02. The associated Trotter error is �Trott
�t5T /t=8�10−6 for T=50 time units. The computation
times varied from a few hours to 3 weeks in the worst case,
in a PC with a dual core processor at 2.2 GHz with 4 GB of
RAM. In the Bose-Hubbard model, each site was truncated
to four levels.

We observe that, in spite of the rather diverse nature of
the physics described by the models �6�–�9�, the scaling of its
entanglement in time follows a very similar pattern. Next we
describe in detail the results obtained for two specific sys-
tems. They have been chosen as representatives of the be-
havior of �� in all the models under study.

Example I: Saturation. Our first example is concerned
with a system of interacting bosons described by the Bose-
Hubbard model HBH of Eq. �9� in a chain with N=100 sites.
Figure 1�a� shows the reorganization of the density of bosons
when one extra particle is introduced in the middle of the
chain, which is in the Mott insulating phase. Figure 2�a�
presents the changes in the spectrum of the squared Schmidt
coefficients ���

r=50�2 during the evolution. We depict the
Schmidt coefficients for r=50 �middle of the chain� because
this is the bipartition that appears most entangled �i.e., ��

=��
r=50 for all �� at all times �except some minor corrections

of one or two sites�. We measure time in 1 /U units, and
choose U=1.

We notice that there are two marked regimes. First, for
times up to t=20–30, a number of Schmidt coefficients in-

crease monotonically, with a growth that progressively slows
down. Bipartite entanglement between the left and the right
halves of the chain is being created �see an analogous behav-
ior obtained analytically in Ref. �15��. Then, for larger times,
and coinciding with the fact that the fronts of the density
wave are far from the middle of the chain, the Schmidt co-
efficients become roughly stationary, indicating that the pro-
duction of bipartite entanglement at the center of the chain
has come to a halt. Notice that this is reflected in an initial
growth, then saturation, of ��, as depicted in Fig. 2�b�. Else-
where in the chain, say r=30, no bipartite entanglement is
generated until the front of the density wave arrives. At that
point, the Schmidt coefficients ��

30 start increasing to later
become stationary, in a pattern that mimics what occurred at
the center of the chain, but with increasingly delayed and
attenuated growth as we move away from the center. The
entanglement entropy of a bipartition,

Sr � − 

�

���
r �2 log2���

r �2, �10�

offers a complementary, coarse-grained picture into the en-
tanglement growth in the system that confirms the above
observations; see Fig. 1�b�.

Example II: Moderate steady growth. A slightly different
pattern of entanglement growth occurs in the antiferromag-
netic quantum Ising model with tilted magnetic field HIsing of
Eq. �6� with N=200 spins. Figure 3�a� shows the propagation
of a magnetization wave produced by flipping one spin in the
center of the chain, r=100, for the case hx=hz=1. Figure
4�a� shows that, as in the first example, a number of Schmidt
coefficients first grow substantially and then tend to saturate.
An important difference, however, is revealed by studying
��, Fig. 4�b�. For �=0.1,0.01, the approximate rank �� again
saturates, but for smaller � it keeps growing in time. This is
due to the appearance of an increasingly large number of
small Schmidt coefficients that need to be considered collec-
tively in order to decrease the truncation error �. Although it
is difficult to characterize the scaling of �� in time, we obtain
results compatible with ��� tp for a power p of the order of
1. Correspondingly, a plot of the entropy, Fig. 3�b�, shows an
initial rapid growth followed by a much slower, possibly
logarithmic growth at longer times.

IV. DISCUSSION

Our simulations show a strikingly similar pattern of en-
tanglement generation in all the systems we have studied
�21�. In particular, we always find a sufficiently large �, e.g.,
�=10−2 in the examples of the previous section, for which ��

seems to saturate as a function of time. This means that a
MPS with fixed rank �� already suffices to approximate �to
accuracy �� the state of the chain during the whole evolution.
However, if we now try to improve this accuracy by lower-
ing �, we find two possible behaviors. In some cases, as in
example I, the rank ��=10−3 still saturates, although at a later
time. In some other cases, as in example II, ��=10−3 keeps
growing indefinitely �that is, as far as we could see with our
computational resources�, with a shape that resembles a
small power of time ��� tp. This moderate entanglement

FIG. 2. �Color online� Entanglement growth at the center of the
chain for the Bose-Hubbard model, Eq. �9�, in the same scenario as
Fig. 1. �a� Starting from a barely entangled state, with only a few
nonvanishing Schmidt coefficients, several other coefficients start to
grow, then saturate. �b� The approximate rank �� first grows, then
saturates at a number that increases as we decrease the truncation
error �. This implies that an accurate approximation to ���t�� can be
stored in a MPS with a small rank �� that after some time becomes
roughly constant.
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growth agrees with the analytical result obtained in Ref. �12�
in a similar scenario. By means of conformal field theory
they show that the entropy grows logarithmically with time,
S�t�� log�t�, when two initially decoupled quantum chains
are joined together. This corresponds as well to a local

quench of the ground state, and the subsequent evolution is
expected to be analogous in terms of entanglement creation
through the whole chain. These mild behaviors are in sharp
contrast with the exponential growth, ���et, that one finds,
e.g., in a spin model where at time t=0 the value of the
magnetic field throughout the whole chain is changed �global
quench� or the spins in half of the chain are flipped
�12,16,17�.

Although the scaling of �� described in this paper corre-
sponds to large times in a large system, both the time and the
system size are obviously finite. Our results show that at
least during a valuably large period of time, the entanglement
grows in a moderate way, enabling the efficient, accurate
simulation of the evolution. Whether at even larger times the
simulation remains efficient is hard to tell. This is not too
relevant, however, in all those applications where the inter-
esting phenomena occur within moderate times from the mo-
ment the perturbation is introduced.

In conclusion, we have studied the generation of entangle-
ment in a particularly relevant class of time evolutions,
namely those that follow from locally perturbing the ground
state of a system, which are related to the computation of
unequal-time two-point correlators �2� in one spatial dimen-
sion. Our results provide strong evidence that such evolu-
tions can quite often be efficiently simulated with algorithms,
such as the TEBD, based on updating a MPS �2,3,5–8�. Our
expectation is that the scaling of entanglement that we have
observed for the specific models under consideration also
applies to most one-dimensional models of interest in con-
densed matter physics and quantum statistical mechanics. It
would be extremely interesting to be able to formally justify
these results. This does not seem to be an easy task.

We conclude by describing two simple toy model evolu-
tions that reproduce the two observed patterns of entangle-

FIG. 3. �Color online� Propa-
gation of a perturbation intro-
duced in the middle of a chain
with N=200 sites, corresponding
to the Ising model with tilted mag-
netic field, Eq. �6�, with hx=hz

=1. Starting with a slightly en-
tangled ground state, at t=0 one
spin is flipped on site 100 apply-
ing 	x

r=100. The evolution of both
�a� the expectation value �	z

r� for
the magnetization on the z direc-
tion and �b� the entropy of a bipar-
tition resemble their analogs in the
Bose-Hubbard model, Fig. 1.
However, Fig. 4 reveals that more
entanglement is generated in this
second system.

FIG. 4. �Color online� Entanglement growth at the center of the
chain for the Ising model with tilted magnetic field, Eq. �6�, in the
same scenario as Fig. 3. �a� As in Fig. 2�a�, starting from a barely
entangled state, with only a few nonvanishing Schmidt coefficients,
several other coefficients start to grow, then tend to saturate; �b� but
while rank �� still saturates for �=0.1,0.01, it keeps growing �ap-
proximately linearly� for lower values �=10−3 ,10−4. �Notice that
we have superposed the results of simulations performed with a
MPS of increasing rank �*=80,100,150. The results are generally
very similar �except, e.g., for a small variation in ��=10−3��.
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ment scaling. Initially, a spin chain is in a ground state where
all the spins are in state �0�. In one case, the perturbation flips
one single spin into state �1�, and the time evolution produces
an entangled state

��1
L� �

1
�L



i

�01 ¯ 1i ¯ 0L� �11�

involving the L central spins of the chain, where L grows
linearly in time, L=2vt, with v the speed of propagation of
the perturbation; see Fig. 5. Here, ��1

L� is a linear combina-
tion of all the strings of L spins containing one single one. It

can be seen that in any link of the chain, the Schmidt rank �
will go from 1 �before the expanding perturbation has
reached that link� to just 2. Thus this model reproduces the
saturation observed in example I. In the second case, the
perturbation flips two spins into state �1� and the time evolu-
tion produces an entangled state

��2
L� �

1
�L�L − 1�



i,j�i

�01 ¯ 1i ¯ 1 j ¯ 0L� �12�

involving the L central spins of the chain, where as before L
grows linearly in time, L=2vt. Now ��2

L� is a linear combi-
nation of all the strings of L spins containing two ones. It can
be seen that in any link of the chain, the Schmidt rank �
grows linearly in time from the moment the expanding per-
turbation reaches that link. Therefore this second evolution
reproduces the moderate steady growth observed in example
II. Perhaps then �more sophisticated versions of� these toy
models will inspire new simulation algorithms, based on an
alternative ansatz that is even more efficient than a MPS for
the considered class of time evolution.
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FIG. 5. �Color online� Toy model for the time evolutions of
examples I and II of Sec. III. The chain is initially in a ground state
with all spins in state �0�. Either 1 or 2 spins are flipped into state �1�
at the middle of the chain, and the evolution produces an entangled
state ��p

L� of Eqs. �11� and �12� �p=1 or 2� that involves a number
L of central spins that grows linearly in time.
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