130 research outputs found

    The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients

    Get PDF
    Tumour-associated Macrophages (TAM) present two different polarizations: classical (M1) characterized by immunostimulation activity and tumour suppression; alternative (M2) characterized by tumour promotion and immune suppression. In this retrospective study, we evaluated the correlation between the two forms of TAM with survival time in radically resected gastric cancer patients. A total of 52 chemo- and radio- naive patients were included. Two slides were prepared for each patient and double-stained for CD68/NOS2 (M1) or CD68/CD163 (M2) and five representative high-power fields per slide were evaluated for TAM count. The median value of the two macrophage populations density and the median value of M1/M2 ratio were used as cut-off. Twenty-seven patients with M1 density above-the-median had a significantly higher survival compared to those below the median. Twenty-six patients with M1/M2 ratio above the median showed median OS of 27.2 months compared to 15.5 months of the patients below the median. No association between M2 macrophage density and patient’s outcome was found. In multivariate analysis, M1/M2 was a positive independent predictor of survival. The M1 macrophage density and M1/M2 ratio, as con- firmed in multivariate analysis, are factors that can help in predicting patients survival time after radical surgery for gastric cancer

    Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models

    Full text link
    We compare, for the overlapping time frame 1962-2000, the estimate of the northern hemisphere (NH) mid-latitude winter atmospheric variability within the XX century simulations of 17 global climate models (GCMs) included in the IPCC-4AR with the NCEP and ECMWF reanalyses. We compute the Hayashi spectra of the 500hPa geopotential height fields and introduce an integral measure of the variability observed in the NH on different spectral sub-domains. Only two high-resolution GCMs have a good agreement with reanalyses. Large biases, in most cases larger than 20%, are found between the wave climatologies of most GCMs and the reanalyses, with a relative span of around 50%. The travelling baroclinic waves are usually overestimated, while the planetary waves are usually underestimated, in agreement with previous studies performed on global weather forecasting models. When comparing the results of various versions of similar GCMs, it is clear that in some cases the vertical resolution of the atmosphere and, somewhat unexpectedly, of the adopted ocean model seem to be critical in determining the agreement with the reanalyses. The GCMs ensemble is biased with respect to the reanalyses but is comparable to the best 5 GCMs. This study suggests serious caveats with respect to the ability of most of the presently available GCMs in representing the statistics of the global scale atmospheric dynamics of the present climate and, a fortiori, in the perspective of modelling climate change.Comment: 39 pages, 8 figures, 2 table

    Phenomenology of the Higgs effective Lagrangian via FeynRules

    Get PDF
    The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FeynRules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FeynRules capable to generate model files that can be understood by the MadGraph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions

    State recognition for ‘contested languages’: a comparative study of Sardinian and Asturian, 1992–2010

    Get PDF
    While the idea of a named language as a separate and discrete identity is a political and social construct, in the cases of Sardinian and Asturian doubts over their respective ‘languageness’ have real material consequences, particularly in relation to language policy decisions at the state level. The Asturian example highlights how its lack of official status means that it is either ignored or subjected to repeated challenges to its status as a language variety deserving of recognition and support, reflecting how ‘official language’ in the Spanish context is often understood in practice as synonymous with the theoretically broader category of ‘language’. In contrast, the recent state recognition of Sardinian speakers as a linguistic minority in Italy (Law 482/1999) illustrates how legal recognition served to overcome existing obstacles to the implementation of regional language policy measures. At the same time, the limited subsequent effects of this Law, particularly in the sphere of education, are a reminder of the shortcomings of top-down policies which fail to engage with the local language practices and attitudes of the communities of speakers recognized. The contrastive focus of this article thus acknowledges the continued material consequences of top-down language classification, while highlighting its inadequacies as a language policy mechanism which reinforces artificial distinctions between speech varieties and speakers deserving of recognition

    Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution

    Get PDF
    Medicanes are cyclones over the Mediterranean Sea having a tropical-like structure but a rather small size, that can produce significant damage due to the combination of intense winds and heavy precipitation. Future climate projections, performed generally with individual atmospheric climate models, indicate that the intensity of the medicanes could increase under climate change conditions. The availability of large ensembles of high resolution and ocean–atmosphere coupled regional climate model (RCM) simulations, performed in MedCORDEX and EURO-CORDEX projects, represents an opportunity to improve the assessment of the impact of climate change on medicanes. As a first step towards such an improved assessment, we analyze the ability of the RCMs used in these projects to reproduce the observed characteristics of medicanes, and the impact of increased resolution and air-sea coupling on their simulation. In these storms, air-sea interaction plays a fundamental role in their formation and intensification, a different mechanism from that of extra-tropical cyclones, where the baroclinic instability mechanism prevails. An observational database, based on satellite images combined with high resolution simulations (Miglietta et al. in Geophys Res Lett 40:2400–2405, 2013), is used as a reference for evaluating the simulations. In general, the simulated medicanes do not coincide on a case-by-case basis with the observed medicanes. However, observed medicanes with a high intensity and relatively long duration of tropical characteristics are better replicated in simulations. The observed spatial distribution of medicanes is generally well simulated, while the monthly distribution reveals the difficulty of simulating the medicanes that first appear in September after the summer minimum in occurrence. Increasing the horizontal resolution has a systematic and generally positive impact on the frequency of simulated medicanes, while the general underestimation of their intensity is not corrected in most cases. The capacity of a few models to better simulate the medicane intensity suggests that the model formulation is more important than reducing the grid spacing alone. A negative intensity feedback is frequently the result of air-sea interaction for tropical cyclones in other basins. The introduction of air-sea coupling in the present simulations has an overall limited impact on medicane frequency and intensity, but it produces an interesting seasonal shift of the simulated medicanes from autumn to winter. This fact, together with the analysis of two contrasting particular cases, indicates that the negative feedback could be limited or even absent in certain situations. We suggest that the effects of air-sea interaction on medicanes may depend on the oceanic mixed layer depth, thus increasing the applicability of ocean–atmosphere coupled RCMs for climate change analysis of this kind of cyclones

    Model-independent analysis of Higgs spin and CP properties in the process e+e−→ttˉΩe^+ e^- \to t \bar t \Phi

    Full text link
    In this paper we investigate methods to study the ttˉt\bar{t} Higgs coupling. The spin and CP properties of a Higgs boson are analysed in a model-independent way in its associated production with a ttˉt\bar{t} pair in high-energy e+e−e^+e^- collisions. We study the prospects of establishing the CP quantum numbers of the Higgs boson in the CP-conserving case as well as those of determining the CP-mixing if CP is violated. We explore in this analysis the combined use of the total cross section and its energy dependence, the polarisation asymmetry of the top quark and the up-down asymmetry of the antitop with respect to the top-electron plane. We find that combining all three observables remarkably reduces the error on the determination of the CP properties of the Higgs Yukawa coupling. Furthermore, the top polarisation asymmetry and the ratio of cross sections at different collider energies are shown to be sensitive to the spin of the particle produced in association with the top quark pair

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF

    Directionality for nuclear recoils in a LAr TPC

    Get PDF
    In the direct searches for Weakly Interacting Massive Particles (WIMPs) as Dark Matter candidates, the sensitivity of the detector to the incom- ing particle direction could provide a smoking gun signature for an interesting event. The SCENE collaboration ïŹrstly suggested the possible directional de- pendence of a dual-phase argon Time Projection Chamber through the columnar recombination eïŹ€ect. The Recoil Directionality project (ReD) within the Global Argon Dark Matter Collaboration aims to characterize the light and charge re- sponse of a liquid Argon dual-phase TPC to neutron-induced nuclear recoils to probe for the hint by SCENE. In this work, the directional sensitivity of the de- tector in the energy range of interest for WIMPs (20-100 keV) is investigated with a data-driven analysis involving a Machine Learning algorithm

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run

    Get PDF
    We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 M⊙–1.0 M⊙ and mass ratio q ≄ 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2yr−1 ⁠. We estimate the sensitivity of our search over the entirety of Advanced LIGO’s and Advanced Virgo’s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH ≳ 0.6 (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out fPBH = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH < 10−5 on the fraction of atomic dark matter collapsed into black holes
    • 

    corecore