35 research outputs found

    Nutritional Asymmetries Are Related to Division of Labor in a Queenless Ant

    Get PDF
    Eusocial species exhibit pronounced division of labor, most notably between reproductive and non-reproductive castes, but also within non-reproductive castes via morphological specialization and temporal polyethism. For species with distinct worker and queen castes, age-related differences in behavior among workers (e.g. within-nest tasks versus foraging) appear to result from physiological changes such as decreased lipid content. However, we know little about how labor is divided among individuals in species that lack a distinct queen caste. In this study, we investigated how fat storage varied among individuals in a species of ant (Dinoponera australis) that lacks a distinct queen caste and in which all individuals are morphologically similar and capable of reproduction (totipotent at birth). We distinguish between two hypotheses, 1) all individuals are physiologically similar, consistent with the possibility that any non-reproductive may eventually become reproductive, and 2) non-reproductive individuals vary in stored fat, similar to highly eusocial species, where depletion is associated with foraging and non-reproductives have lower lipid stores than reproducing individuals. Our data support the latter hypothesis. Location in the nest, the probability of foraging, and foraging effort, were all associated with decreased fat storage

    Social stress increases the susceptibility to infection in the ant Harpegnathos saltator

    Get PDF
    Aggressive interactions between members of a social group represent an important source of social stress with all its negative follow-ups. We used the ponerine ant Harpegnathos saltator to study the effects of frequent aggressive interactions on the resistance to different stressors. In these ants, removal or death of reproducing animals results in a period of social instability within the colony that is characterized by frequent ritualized aggressive interactions leading to the establishment of a new dominance structure. Animals are more susceptible to infections during this period, whereas their resistance against other stressors remained unchanged. This is associated with a shift from glutathione-S-transferase activities towards glutathione peroxidase activities, which increases the antioxidative capacity at the expense of their immune competence

    Reproductive monopoly enforced by sterile police workers in a queenless ant

    No full text
    International audienc

    Ant cuticles: a trap for atmospheric phthalate contaminants

    No full text
    International audiencePhthalates are universal contaminants. We show that they are trapped by the ant cuticles and maintained permanently at a low level, generally less than 1% of cuticular components. They are found throughout the interior of the insect, predominately in the fat body, which suggests that they are adsorbed by the cuticle. In open plastic boxes free of phthalates the ants became more contaminated with phthalates over a period of time, whereas in closed glass jars they did not. This finding suggests that the main source of pollutants is the atmosphere. Different ant species collected from multiple places showed similar levels of contamination. It appeared that in some pristine places the contamination was lower, but this needs to be confirmed. Ants can be considered as bio-indicators of phthalate pollution

    Identification of a reproductive-specific, putative lipid transport protein gene in a queenless ponerine ant Diacamma sp.

    Get PDF
    Of the various characteristics of social insects, communication for reproductive differentiation is one of the most important and basic social interactions among colony members. To elucidate the molecular basis underlying this process, genes responsible for reproductive differentiation in Diacamma were screened using fluorescent differential display. Differential display, together with real-time quantitative RT-PCR, revealed that a gene belonging to the family of cellular retinaldehyde-binding proteins was specifically expressed in the epidermis of the head, legs, and thorax in reproductives. The deduced protein sequence in the coding region, obtained by RACE PCR, was found to include CRAL-TRIO domain, suggesting that DiaCRALDCP functions in transportation of lipids, such as cuticular hydrocarbons. DiaCRALDCP transcript levels immediately decreased 1 day after the gemma mutilation, suggesting that DiaCRALDCP is involved in the physiological changes provoked by the behavioral regulation. Considering these results, the social functions of DiaCRALDCP in Diacamma are discussed
    corecore