67 research outputs found

    Current Status and Future Strategy in \u3ci\u3eMegathyrsus maximus\u3c/i\u3e Breeding Program at the Alliance Bioversity - CIAT

    Get PDF
    Megathyrsus maximus (Jacq.) B.K. Simon & S.W.L. Jacobs is one of the most important grass species cultivated for cattle production in cut and carry systems. There is a need to search for superior hybrids with high potential for mitigation and adaptation to climate change. A big proportion of the M. maximus germplasm, preserved in the CIAT GeneBank has been agronomically characterized and genotypes with desirable traits such as high drought tolerance, high BNI potential (Biological nitrification inhibition), high nutritional quality (biomass production, dry matter, crude protein, acid detergent fiber, neutral detergent fiber and dry matter digestibility) and high seed production have been identified. The Megathyrsus maximus breeding program at the alliance Bioversity-CIAT (Alliance) started in 2016 following simultaneously two breeding schemes (Recurrent Selection based on Specific Combining Ability (RS-SCA) and Reciprocal Recurrent selection (RRS)). To start of RS-SCA scheme, a highly diverse, synthetic, sexual population was created, followed by the establishment of a factorial design using nine apomictic male testers and 30 sexual mothers. The aim of the factorial design was not only to estimate various genetic parameters, but also to identify the best possible apomictic tester with the best Combining Ability. Simultaneously, in order to start the breeding scheme of RRS, two open pollination blocks were established independently, following the heterotic pattern revealed by a population structure study using SSR markers. In the future, we aim to apply simulation based R packages to predict the genetic gain in both scenarios, followed by the validation of the predictions with measurement of genetic gain based on field data, when considering the allocation of resources and logistics required in each scenario

    Review of \u3ci\u3eUrochloa\u3c/i\u3e Breeder’s Toolbox with the Theory of Change and Stage Gate System Approach

    Get PDF
    Livestock production in the global south is at crossroads as there is a demand to increase Animal Source Foods to address hunger and pressure to lighten the environmental footprint often associated with livestock production. To satisfy both needs, the use of technologies that improve animal performance, while reducing land use and net Greenhouse Gas emissions produced by animals is essential. One of such technologies are Urochloa forage grasses. Urochloa forage grasses are well known for their rusticity and their ability to grow in soils of low fertility and high aluminum content. These characteristics allow Urochloa to grow in areas temporally or spatially less suitable for crop production, but also have made ruminants production profitable in areas that would not be otherwise. However, productivity and sustainability of ruminant production in these areas is likely to fall within the next decade due to climate change unless action is taken. Despite these known benefits of Urochloa forage species, breeding programs have long delayed initiation due to apomixes and differences in ploidy. In the mid-1980s, the development of suitable sexual germplasm allowed crossings, and therefore favoured the emergence of breeding programs. In recent decades, several advances in biology, molecular biology, phenotyping, population genetics, genomics and transcriptomics have generated a plethora of information that ought to be integrated for its use in a single breeding toolbox. We use the Theory of Change and Stage-Gate systems approach to review these advances in research and the utility of the current and future available tools. Further, we address the remaining lack of information, thus bridging the knowledge gap and enabling us to maximize the genetic gain in the different Urochloa breeding programs. In this way, we identify breeding bottlenecks and help to pinpoint priorities for Urochloa research and development

    Diverged subpopulations in tropical Urochloa (Brachiaria) forage species indicate a role for facultative apomixis and varying ploidy in their population structure and evolution

    Get PDF
    Abstract Background Urochloa (syn. Brachiaria) is a genus of tropical grasses sown as forage feedstock, particularly in marginal soils. Here we aimed to clarify the genetic diversity and population structure in Urochloa species to understand better how population evolution relates to ploidy level and occurrence of apomictic reproduction. Methods We explored the genetic diversity of 111 accessions from the five Urochloa species used to develop commercial cultivars. These accessions were conserved from wild materials collected at their centre of origin in Africa, and they tentatively represent the complete Urochloa gene pool used in breeding programmes. We used RNA-sequencing to generate 1.1 million single nucleotide polymorphism loci. We employed genetic admixture, principal component and phylogenetic analyses to define subpopulations. Results We observed three highly differentiated subpopulations in U. brizantha, which were unrelated to ploidy: one intermixed with U. decumbens, and two diverged from the former and the other species in the complex. We also observed two subpopulations in U. humidicola, unrelated to ploidy; one subpopulation had fewer accessions but included the only characterized sexual accession in the species. Our results also supported a division of U. decumbens between diploids and polyploids, and no subpopulations within U. ruziziensis and U. maxima. Conclusions Polyploid U. decumbens are more closely related to polyploid U. brizantha than to diploid U. decumbens, which supports the divergence of both polyploid groups from a common tetraploid ancestor and provides evidence for the hybridization barrier of ploidy. The three differentiated subpopulations of apomictic polyploid U. brizantha accessions constitute diverged ecotypes, which can probably be utilized in hybrid breeding. Subpopulations were not observed in non-apomictic U. ruziziensis. Sexual Urochloa polyploids were not found (U. brizantha, U. decumbens) or were limited to small subpopulations (U. humidicola). The subpopulation structure observed in the Urochloa sexual–apomictic multiploidy complexes supports geographical parthenogenesis, where the polyploid genotypes exploit the evolutionary advantage of apomixis, i.e. uniparental reproduction and clonality, to occupy extensive geographical areas

    Genotype-by-Environment Interaction in Interspecific \u3cem\u3eUrochloa\u3c/em\u3e Hybrids Using Factor Analytic Models

    Get PDF
    Environmental factors can influence plant phenotypes shaping the expression of pastures. The ability to test genotypes in multiple environments is critical in a breeding program because important traits are heavily influenced by the environment. Nutritional quality is critical in forage breeding because it affects the rate of live weight gain in livestock as well as the quality of end products such as milk and meat. However, there is not much information on the environmental effect on agronomic and nutritional quality traits in tropical forages. For this reason, the objective of the present study was to investigate the genotype-by-environment interaction in a breeding population of interspecific Urochloa hybrids evaluated for agronomic and nutritional quality traits across four locations in Colombia, using factor analytic mixed models. Phenotypic correlations among traits ranged from 0.26 (plant area vs dry weight) to 0.93 (fresh weight vs dry weight), indicating a strong interaction in some traits. Genetic correlations among environments showed different ranges depending on the variable evaluated. For example, plant height genetic correlations among environments ranged from 0.16 to 0.9, indicating high genotype-byenvironment interaction. The factor analytic analysis revealed that two factors explained more than 60% of the genetic variance in all traits evaluated and that 80% of the environments were clustered in the first factor. Factor analytic biplot indicates that Llanos location differed strongly from other locations evaluated. Based on the results obtained, the factor analytic analysis is a useful tool to stratify environments and identify Urochloa cultivars adapted to different ecological niches

    Complex polyploid and hybrid species in an apomictic and sexual tropical forage grass group: genomic composition and evolution in Urochloa (Brachiaria) species

    Get PDF
    Background and Aims Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C-4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. Methods Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. Key Results Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. Conclusions We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands

    Siembra experimental mecanizada en ensayos de cebada.

    Get PDF
    Se efectuó una siembra a máquina para comparar este sistema de siembra con el tradicional y evaluar las ventajas y desventajas de los dos sistemas. El ensayo se llevó a cabo en el Centro de Investigaciones Tibaitatá (Cundinamarca), utilizando una máquina que sembraba 8 hileras de 2 variedades de cebada a la vez, la distancia entre hileras era de 7.18 m, la profundidad de siembra, de 7 a 8 cm. La extensión sembrada fué de 0.5 ha. A los 8 días el 80 por ciento de la siembra efectuada a máquina había emergido, en la siembra hecha a mano, al término de los 8 días se observó un desarrollo irregular. El sistema de siembra a mano ocupó el doble de la extensión utilizada a máquina y el triple de tiempo. De tal forma, se concluye que la siembra mecanizada es más eficiente y económica que la efectuada a manoCebada-Hordeum vulgar

    Dietary Fluoride Intake Over the Course of Pregnancy in Mexican Women

    Get PDF
    Objective: To estimate dietary fluoride intake (F) over the course of pregnancy and the overall adjusted difference in dietary F intake by pregnancy stages and levels of compliance with dietary recommendations. Design: Secondary data analysis from a longitudinal pregnancy cohort study in a population exposed to fluoridated salt. Women were followed during the early, middle and late stages of their pregnancy (n 568). The dietary intake of recommended prenatal nutrients according to Mexican dietary guidelines and F intake (mg/d) was estimated with a validated FFQ. Data were summarised with descriptive statistics. Levels of F intake were compared with the USA’s Institute of Medicine adequate intake (AI) of 3 mg/d for pregnancy. Adjusted differences in F intake by pregnancy stages and levels of compliance with recommendations were estimated using random effects models. Setting: Mexico City. Participants: Women participating in the Early Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT) project, from 2001 to 2003. Results: Median dietary F intake throughout pregnancy ranged from 0·64 (interquartile range (IQR) 0·38) in the early to 0·70 (IQR 0·42) in the middle, and 0·72 (IQR 0·44) mg/d in the late stage (0·01 mg F/kg per d). Corresponding adjusted intakes of F were 0·72 (95 % CI 0·70, 0·74), 0·76 (95 % CI 0·74, 0·77) and 0·80 (95 % CI 0·78, 0·82) mg/d. Women who were moderately and highly compliant with Mexican dietary recommendations ingested, on average, 0·04 and 0·14 mg F/d more than non-compliant women (P < 0·005). Conclusions: Dietary F intake was below current AI, was greater with the progression of pregnancy and in women who were moderately and highly compliant with dietary recommendations

    Jaguar Densities across Human-Dominated Landscapes in Colombia: The Contribution of Unprotected Areas to Long Term Conservation

    Get PDF
    Large carnivores such as jaguars (Panthera onca) are species of conservation concern because they are suffering population declines and are keystone species in their ecosystems. Their large area requirements imply that unprotected and ever-increasing agricultural regions can be important habitats as they allow connectivity and dispersal among core protected areas. Yet information on jaguar densities across unprotected landscapes it is still scarce and crucially needed to assist management and range-wide conservation strategies. Our study provides the first jaguar density estimates of Colombia in agricultural regions which included cattle ranching, the main land use in the country, and oil palm cultivation, an increasing land use across the Neotropics. We used camera trapping across two agricultural landscapes located in the Magdalena River valley and in the Colombian llanos (47–53 stations respectively; >2000 trap nights at both sites) and classic and spatially explicit capture-recapture models with the sex of individuals as a covariate. Density estimates were 2.52±0.46–3.15±1.08 adults/100 km2 in the Magdalena valley, whereas 1.12±0.13–2.19±0.99 adults/100 km2 in the Colombian llanos, depending on analysis used. We suggest that jaguars are able to live across unprotected human-use areas and co-exist with agricultural landscapes including oil-palm plantations if natural areas and riparian habitats persist in the landscape and hunting of both jaguar and prey is limited. In the face of an expanding agriculture across the tropics we recommend land-use planning, adequate incentives, regulations, and good agricultural practices for range-wide jaguar connectivity and survival

    Pattern recognition receptors in immune disorders affecting the skin.

    Get PDF
    Contains fulltext : 109004.pdf (publisher's version ) (Open Access)Pattern recognition receptors (PRRs) evolved to protect organisms against pathogens, but excessive signaling can induce immune responses that are harmful to the host. Putative PRR dysfunction is associated with numerous immune disorders that affect the skin, such as systemic lupus erythematosus, cryopyrin-associated periodic syndrome, and primary inflammatory skin diseases including psoriasis and atopic dermatitis. As yet, the evidence is often confined to genetic association studies without additional proof of a causal relationship. However, insight into the role of PRRs in the pathophysiology of some disorders has already resulted in new therapeutic approaches based on immunomodulation of PRRs
    • …
    corecore