1,162 research outputs found
The effect of daily /24 hour/ precession of the geomagnetic dipole on the creation of Sq-variations
Daily procession of geomagnetic dipole effect on ionospheric Sq variation
Epsilon-Near-Zero Grids for On-chip Quantum Networks
Realization of an on-chip quantum network is a major goal in the field of
integrated quantum photonics. A typical network scalable on-chip demands
optical integration of single photon sources, optical circuitry and detectors
for routing and processing of quantum information. Current solutions either
notoriously experience considerable decoherence or suffer from extended
footprint dimensions limiting their on-chip scaling. Here we propose and
numerically demonstrate a robust on-chip quantum network based on an
epsilon-near-zero (ENZ) material, whose dielectric function has the real part
close to zero. We show that ENZ materials strongly protect quantum information
against decoherence and losses during its propagation in the dense network. As
an example, we model a feasible implementation of an ENZ network and
demonstrate that quantum information can be reliably sent across a titanium
nitride grid with a coherence length of 434 nm, operating at room temperature,
which is more than 40 times larger than state-of-the-art plasmonic analogs. Our
results facilitate practical realization of large multi-node quantum photonic
networks and circuits on-a-chip.Comment: 13 pages, 5 figure
KIC011764567: An evolved object showing substantial flare-activity
We intensively studied the flare activity on the stellar object KIC011764567.
The star was thought to be solar type, with a temperature of K, dex and a rotational period of Prot 22
d (Brown et al. 2011). High resolution spectra turn the target to an evolved
object with Teff = (5300 \pm 150) K, a metalicity of ,
a surface gravity of dex, and a projected rotational
velocity of . Within an observing time span of
4 years we detected 150 flares in Kepler data in an energy range of erg. From a dynamical Lomb-Scargle periodogram we have evidence for
differential rotation as well as for stellar spot evolution and migration.
Analysing the occurrence times of the flares we found hints for a periodic
flare frequency cycle of d, the significance increases with an
increasing threshold of the flares equivalent duration. One explanation is a
very short activity cycle of the star with that period. Another possibility,
also proposed by others in similar cases, is that the larger flares may be
triggered by external phenomena, such as magnetically interaction with an
unseen companion. Our high resolution spectra show that KIC011764567 is not a
short period binary star
Three-body correlations in direct reactions: Example of Be populated in reaction
The Be continuum states were populated in the charge-exchange reaction
H(Li,Be) collecting very high statistics data ( events) on the three-body ++ correlations. The
Be excitation energy region below MeV is considered, where the
data are dominated by contributions from the and states. It is
demonstrated how the high-statistics few-body correlation data can be used to
extract detailed information on the reaction mechanism. Such a derivation is
based on the fact that highly spin-aligned states are typically populated in
the direct reactions.Comment: submitted to Physical Review
Calculations of He+p Elastic Cross Sections Using Microscopic Optical Potential
An approach to calculate microscopic optical potential (OP) with the real
part obtained by a folding procedure and with the imaginary part inherent in
the high-energy approximation (HEA) is applied to study the He+p elastic
scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and
proton density distributions obtained in different models for He are
utilized in the calculations of the differential cross sections. The role of
the spin-orbit potential is studied. Comparison of the calculations with the
available experimental data on the elastic scattering differential cross
sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The
problem of the ambiguities of the depths of each component of the optical
potential is considered by means of the imposed physical criterion related to
the known behavior of the volume integrals as functions of the incident energy.
It is shown also that the role of the surface absorption is rather important,
in particular for the lowest incident energies (e.g., 15.7 and 26.25
MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review
Charge and matter distributions and form factors of light, medium and heavy neutron-rich nuclei
Results of charge form factors calculations for several unstable neutron-rich
isotopes of light, medium and heavy nuclei (He, Li, Ni, Kr, Sn) are presented
and compared to those of stable isotopes in the same isotopic chain. For the
lighter isotopes (He and Li) the proton and neutron densities are obtained
within a microscopic large-scale shell-model, while for heavier ones Ni, Kr and
Sn the densities are calculated in deformed self-consistent mean-field Skyrme
HF+BCS method. We also compare proton densities to matter densities together
with their rms radii and diffuseness parameter values. Whenever possible
comparison of form factors, densities and rms radii with available experimental
data is also performed. Calculations of form factors are carried out both in
plane wave Born approximation (PWBA) and in distorted wave Born approximation
(DWBA). These form factors are suggested as predictions for the future
experiments on the electron-radioactive beam colliders where the effect of the
neutron halo or skin on the proton distributions in exotic nuclei is planned to
be studied and thereby the various theoretical models of exotic nuclei will be
tested.Comment: 26 pages, 11 figures, 3 tables, accepted for publication in Phys.
Rev.
New insight into the low-energy He spectrum
The spectrum of He was studied by means of the He(,)He
reaction at a lab energy of 25 MeV/n and small center of mass (c.m.) angles.
Energy and angular correlations were obtained for the He decay products by
complete kinematical reconstruction. The data do not show narrow states at
1.3 and 2.4 MeV reported before for He. The lowest resonant
state of He is found at about 2 MeV with a width of 2 MeV and is
identified as . The observed angular correlation pattern is uniquely
explained by the interference of the resonance with a virtual state
(limit on the scattering length is obtained as fm), and with
the resonance at energy MeV.Comment: 5 pages, 4 figures, 2 table
Calculations of He+p elastic scattering cross sections using folding approach and high-energy approximation for the optical potential
Calculations of microscopic optical potentials (OP's) (their real and
imaginary parts) are performed to analyze the He+p elastic scattering data
at a few tens of MeV/nucleon (MeV/N). The OP's and the cross sections are
calculated using three model densities of He. Effects of the regularization
of the NN forces and their dependence on nuclear density are investigated.
Also, the role of the spin-orbit terms and of the non-linearity in the
calculations of the OP's, as well as effects of their renormalization are
studied. The sensitivity of the cross sections to the nuclear densities was
tested and one of them that gives a better agreement with the data was chosen.Comment: 13 pages, 11 figures, to be published in Eur. Phys. J.
- …
