54 research outputs found

    Enterotoxin- and Antibiotic-Resistance-Encoding Genes Are Present in Both Coagulase-Positive and Coagulase-Negative Foodborne Staphylococcus Strains

    Get PDF
    Food poisoning by staphylococcal enterotoxins (SE) is a major cause of foodborne illness, often associated with coagulase-positive staphylococci (CPS). The increase in the number of methicillin-resistant Staphylococcus aureus (MRSA) strains is another major problem associated with CPS. However, reports of the association of SE and methicillin-resistant Staphylococcus with coagulase-negative staphylococci (CNS) are beginning to re-emerge. In this context, the aim of this study is to investigate the presence of staphylococcal enterotoxin genes and to characterize the phenotypic and genotypic antimicrobial resistance in 66 isolates of Staphylococcus spp. (47 CNS and 19 CPS) recovered from ready-to-eat (RTE) street food sold in Maputo, Mozambique. Seven virulence genes encoding SE (sea, seb, sec, sed and see) and two toxins (hlb and sak) were screened by multiplex PCR (MPCR). Antimicrobial resistance against 12 antibiotics was evaluated by the disk diffusion method. The presence of genes encoding resistance to penicillin, methicillin, vancomycin and erythromycin (blaZ, mecA, vancA, vancB, ermA, ermB and ermC) were also screened by PCR. At least one of the seven virulence genes assessed in this study was detected in 57.9% and 51% of CPS and CNS isolates, respectively. In CPS isolates, the most frequent gene was hlb (47.4%), followed by sec (15.8%) and sea, seb and sed genes with 5.3% each. In CNS isolates, the most frequent gene was sec (36.2%) followed by sak (17%), hlb (14.9%), sed (12.8%) and seb (6.4%). Five of the twelve CPS in which virulence genes were detected were also antibiotic-resistant. All the CNS isolates harboring virulence genes (n = 27, 57.4%) were antimicrobial-resistant. The prevalence of multidrug resistance was higher (59.6%) in CNS than in CPS (26.3%) isolates. Regarding the presence of antibiotic-resistance genes, blaZ (penicillin-resistant) was the most frequent in both CPS (42.1%) and CNS (87.2%), followed by the mecA (encoding methicillin resistance) and vancA genes (vancomycin-resistant), which represented 36.8% and 31.6% in CPS isolates and 46.8% in CNS isolates, respectively. The prevalence of vancomycin-resistant staphylococci has been increasing worldwide and, to our knowledge, this is the first study to report the occurrence of vancomycin-resistant staphylococci in Mozambique. These results emphasize the need to investigate CNS isolates in parallel with CPS, as both constitute public health hazards, given their potential to produce SE and spread antimicrobial resistance genes.info:eu-repo/semantics/publishedVersio

    Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    Get PDF
    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs

    Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes

    Get PDF
    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.This work was supported by Fundacao Ciencia e Tecnologia (FCT/MCTES/PIDDAC, Portugal), under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012)

    Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat

    Get PDF
    Climate change will impact forest ecosystems, their biodiversity and the livelihoods they sustain. Several adaptation and mitigation strategies to counteract climate change impacts have been proposed for these ecosystems. However, effective implementation of such strategies requires a clear understanding of how climate change will influence the future distribution of forest ecosystems. This study uses maximum entropy modelling (MaxEnt) to predict environmentally suitable areas for cork oak (Quercus suber) woodlands, a socio-economically important forest ecosystem protected by the European Union Habitats Directive. Specifically, we use two climate change scenarios to predict changes in environmental suitability across the entire geographical range of the cork oak and in areas where stands were recently established. Up to 40 % of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and southern Iberian Peninsula. Almost 90 % of new cork oak stands are predicted to lose suitability by the end of the century, but future plantations can take advantage of increasing suitability in northern Iberian Peninsula and France. The predicted impacts cross-country borders, showing that a multinational strategy, will be required for cork oak woodland adaptation to climate change. Such a strategy must be regionally adjusted, featuring the protection of refugia sites in southern areas and stimulating sustainable forest management in areas that will keep long-term suitability. Afforestation efforts should also be promoted but must consider environmental suitability and land competition issues

    Analysis of ecological thresholds in a temperate forest undergoing dieback.

    Get PDF
    Positive feedbacks in drivers of degradation can cause threshold responses in natural ecosystems. Though threshold responses have received much attention in studies of aquatic ecosystems, they have been neglected in terrestrial systems, such as forests, where the long time-scales required for monitoring have impeded research. In this study we explored the role of positive feedbacks in a temperate forest that has been monitored for 50 years and is undergoing dieback, largely as a result of death of the canopy dominant species (Fagus sylvatica, beech). Statistical analyses showed strong non-linear losses in basal area for some plots, while others showed relatively gradual change. Beech seedling density was positively related to canopy openness, but a similar relationship was not observed for saplings, suggesting a feedback whereby mortality in areas with high canopy openness was elevated. We combined this observation with empirical data on size- and growth-mediated mortality of trees to produce an individual-based model of forest dynamics. We used this model to simulate changes in the structure of the forest over 100 years under scenarios with different juvenile and mature mortality probabilities, as well as a positive feedback between seedling and mature tree mortality. This model produced declines in forest basal area when critical juvenile and mature mortality probabilities were exceeded. Feedbacks in juvenile mortality caused a greater reduction in basal area relative to scenarios with no feedback. Non-linear, concave declines of basal area occurred only when mature tree mortality was 3-5 times higher than rates observed in the field. Our results indicate that the longevity of trees may help to buffer forests against environmental change and that the maintenance of old, large trees may aid the resilience of forest stands. In addition, our work suggests that dieback of forests may be avoidable providing pressures on mature and juvenile trees do not pass critical thresholds

    Mycorrhization of fagaceae forests within mediterranean ecosystems

    Get PDF
    Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.info:eu-repo/semantics/publishedVersio

    Forest Policies in a Changing International Context

    No full text
    corecore