40 research outputs found
Comparative psychometrics: establishing what differs is central to understanding what evolves
Cognitive abilities cannot be measured directly. What we can measure is individual variation in task performance. In this paper, we first make the case for why we should be interested in mapping individual differences in task performance on to particular cognitive abilities: we suggest that it is crucial for examining the causes and consequences of variation both within and between species. As a case study, we examine whether multiple measures of inhibitory control for non-human animals do indeed produce correlated task performance; however, no clear pattern emerges that would support the notion of a common cognitive ability underpinning individual differences in performance. We advocate a psychometric approach involving a three-step programme to make theoretical and empirical progress: first, we need tasks that reveal signature limits in performance. Second, we need to assess the reliability of individual differences in task performance. Third, multi-trait multi-method test batteries will be instrumental in validating cognitive abilities. Together, these steps will help us to establish what varies between individuals that could impact their fitness and ultimately shape the course of the evolution of animal minds. Finally, we propose executive functions, including working memory, inhibitory control and attentional shifting, as a sensible starting point for this endeavour
What happened? Do preschool children and capuchin monkeys spontaneously use visual traces to locate a reward?
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 639072). Edinburgh Zoo's Living Links Research Facility is core supported by the Royal Zoological Society of Scotland (registered charity no.: SC004064) through funding generated by its visitors, members and supporters.The ability to infer unseen causes from evidence is argued to emerge early in development and to be uniquely human. We explored whether preschoolers and capuchin monkeys could locate a reward based on the physical traces left following a hidden event. Preschoolers and capuchin monkeys were presented with two cups covered with foil. Behind a barrier, an experimenter (E) punctured the foil coverings one at a time, revealing the cups with one cover broken after the first event and both covers broken after the second. One event involved hiding a reward, the other event was performed with a stick (order counterbalanced). Preschoolers and, with additional experience, monkeys could connect the traces to the objects used in the puncturing events to find the reward. Reversing the order of events perturbed the performance of 3-year olds and capuchins, while 4-year-old children performed above chance when the order of events was reversed from the first trial. Capuchins performed significantly better on the ripped foil task than they did on an arbitrary test in which the covers were not ripped but rather replaced with a differently patterned cover. We conclude that by 4 years of age children spontaneously reason backwards from evidence to deduce its cause.Publisher PDFPeer reviewe
Intuitive optics : what great apes infer from mirrors and shadows
There is ongoing debate about the extent to which nonhuman animals, like humans, can go beyond first-order perceptual information to abstract structural information from their environment. In order to provide more empirical evidence regarding this question, we examined what type of information great apes (chimpanzees, bonobos, and orangutans) gain from optical effects such as shadows and mirror images. In an initial experiment, we investigated whether apes would use mirror images and shadows to locate hidden food. We found that all examined ape species used these cues to find the food. Follow-up experiments showed that apes neither confused these optical effects with the food rewards nor did they merely associate cues with food. First, naïve chimpanzees used the shadow of the hidden food to locate it but they did not learn within the same number of trials to use a perceptually similar rubber patch as indicator of the hidden food reward. Second, apes made use of the mirror images to estimate the distance of the hidden food from their own body. Depending on the distance, apes either pointed into the direction of the food or tried to access the hidden food directly. Third, apes showed some sensitivity to the geometrical relation between mirror orientation and mirrored objects when searching hidden food. Fourth, apes tended to interpret mirror images and pictures of these mirror images differently depending on their prior knowledge. Together, these findings suggest that apes are sensitive to the optical relation between mirror images and shadows and their physical referents.Publisher PDFPeer reviewe
Inhibitory control and cue relevance modulate chimpanzees’ (Pan troglodytes) performance in a spatial foraging task
This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 639072). Brandon Tinklenberg was supported by a grant from the Social Sciences and Humanities Research Council of Canada (SSHRC 435-2016-1051).Inhibition tasks usually require subjects to exert control to act correctly when a competing action plan is prepotent. In comparative psychology, one concern about the existing inhibition tasks is that the relative contribution of inhibitory control to performance (as compared to learning or object knowledge) is rarely explicitly investigated. We addressed this problem by presenting chimpanzees with a spatial foraging task in which they could acquire food more efficiently by learning which objects were baited. In Experiment 1, we examined how objects that elicited a prepotent approach response, transparent cups containing food, affected their learning rates. Although showing an initial bias to approach these sealed cups with visible food, the chimpanzees learned to avoid them more quickly across sessions compared to a color discrimination. They also learned a color discrimination more quickly if the incorrect cups were sealed such that a piece of food could never be hidden inside them. In Experiment 2, visible food of 2 different types was sealed in the upper part of the cups: 1 type signaled the presence of food reward hidden underneath; the cups with the other type were sealed. The chimpanzees learned more quickly in a congruent condition (the to-be-chosen food cue matched the reward) than in an incongruent condition (the to-be-avoided food cue matched the reward). Together, these findings highlight that performance in inhibition tasks is affected by several other cognitive abilities such as object knowledge, memory, and learning, which need to be quantified before meaningful comparisons can be drawn.PostprintPeer reviewe
How can I find what I want? Can children, chimpanzees and capuchin monkeys form abstract representations to guide their behavior in a sampling task?
Authors are grateful to the Royal Zoological Society of Scotland (RZSS) and the University of St Andrews for core financial support to the RZSS Edinburgh Zoo’s Living Links Research Centre, where this project was carried out. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. [639072]). We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number 2016-05552].Abstract concepts are a powerful tool for making wide-ranging predictions in new situations based on little experience. Whereas looking-time studies suggest an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often fail to detect abstract concepts until late preschool years. Similarly, non-human animals show difficulties and often succeed only after long training regimes. Given the considerable influence of slight task modifications, the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning is debated. Here, we tested the abilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design based on the concept of “overhypotheses” (Goodman, 1955). Participants sampled high- and low-valued items from containers that either each offered items of uniform value or a mix of high- and low-valued items. In a test situation, participants should switch away earlier from a container offering low-valued items when they learned that, in general, items within a container are of the same type, but should stay longer if they formed the overhypothesis that containers bear a mix of types. We compared each species' performance to the predictions of a probabilistic hierarchical Bayesian model forming overhypotheses at a first and second level of abstraction, adapted to each species' reward preferences. Children and, to a more limited extent, chimpanzees demonstrated their sensitivity to abstract patterns in the evidence. In contrast, capuchin monkeys did not exhibit conclusive evidence for the ability of abstract knowledge formation.Publisher PDFPeer reviewe
Recommended from our members
Chimpanzees prepare for alternative possible outcomes
When facing uncertainty, humans often build mental models of alternative outcomes. Considering diverging scenarios allows agents to respond adaptively to different actual worlds by developing contingency plans (covering one's bases). In a pre-registered experiment, we tested whether chimpanzees (Pan troglodytes) prepare for two mutually exclusive possibilities. Chimpanzees could access two pieces of food, but only if they successfully protected them from a human competitor. In one condition, chimpanzees could be certain about which piece of food the human experimenter would attempt to steal. In a second condition, either one of the food rewards was a potential target of the competitor. We found that chimpanzees were significantly more likely to protect both pieces of food in the second relative to the first condition, raising the possibility that chimpanzees represent and prepare effectively for different possible worlds.PostprintPeer reviewe
Exploring the dog–human relationship by combining fMRI, eye-tracking and behavioural measures
Behavioural studies revealed that the dog–human relationship resembles the human mother–child bond, but the underlying mechanisms remain unclear. Here, we report the results of a multi-method approach combining fMRI (N = 17), eye-tracking (N = 15), and behavioural preference tests (N = 24) to explore the engagement of an attachment-like system in dogs seeing human faces. We presented morph videos of the caregiver, a familiar person, and a stranger showing either happy or angry facial expressions. Regardless of emotion, viewing the caregiver activated brain regions associated with emotion and attachment processing in humans. In contrast, the stranger elicited activation mainly in brain regions related to visual and motor processing, and the familiar person relatively weak activations overall. While the majority of happy stimuli led to increased activation of the caudate nucleus associated with reward processing, angry stimuli led to activations in limbic regions. Both the eye-tracking and preference test data supported the superior role of the caregiver’s face and were in line with the findings from the fMRI experiment. While preliminary, these findings indicate that cutting across different levels, from brain to behaviour, can provide novel and converging insights into the engagement of the putative attachment system when dogs interact with humans
The structure of executive functions in preschool children and chimpanzees
Executive functions (EF) are a core aspect of cognition. Research with adult humans has produced evidence for unity and diversity in the structure of EF. Studies with preschoolers favour a 1-factor model, in which variation in EF tasks is best explained by a single underlying trait on which all EF tasks load. How EF are structured in nonhuman primates remains unknown. This study starts to fill this gap through a comparative, multi-trait multi-method test battery with preschoolers (N = 185) and chimpanzees (N = 55). The battery aimed at measuring working memory updating, inhibition, and attention shifting with three non-verbal tasks per function. For both species the correlations between tasks were low to moderate and not confined to tasks within the same putative function. Factor analyses produced some evidence for the unity of executive functions in both groups, in that our analyses revealed shared variance. However, we could not conclusively distinguish between 1-, 2- or 3-factor models. We discuss the implications of our findings with respect to the ecological validity of current psychometric research
Dosimetry and optimal scan time of 18FSiTATE-PET/CT in patients with neuroendocrine tumours
PURPOSE Radiolabelled somatostatin analogues targeting somatostatin receptors (SSR) are well established for combined positron emission tomography/computer tomography (PET/CT) imaging of neuroendocrine tumours (NET). 18FSiTATE has recently been introduced showing high image quality, promising clinical performance and improved logistics compared to the clinical reference standard 68Ga-DOTA-TOC. Here we present the first dosimetry and optimal scan time analysis. METHODS Eight NET patients received a 18FSiTATE-PET/CT (250 ± 66~MBq) with repeated emission scans (10, 30, 60, 120, 180~min after injection). Biodistribution in normal organs and SSR-positive tumour uptake were assessed. Dosimetry estimates for risk organs were determined using a combined linear-monoexponential model, and by applying 18F S-values and reference target masses for the ICRP89 adult male or female (OLINDA 2.0). Tumour-to-background ratios were compared quantitatively and visually between different scan times. RESULTS After 1 h, normal organs showed similar tracer uptake with only negligible changes until 3 h post-injection. In contrast, tracer uptake by tumours increased progressively for almost all types of metastases, thus increasing tumour-to-background ratios over time. Dosimetry resulted in a total effective dose of 0.015 ± 0.004~mSv/MBq. Visual evaluation revealed no clinically relevant discrepancies between later scan times, but image quality was rated highest in 60 and 120~min images. CONCLUSION 18FSiTATE-PET/CT in NET shows overall high tumour-to-background ratios from 60 to 180~min after injection and an effective dose comparable to 68Ga-labelled alternatives. For clinical use of 18FSiTATE, the best compromise between image quality and tumour-to-background contrast is reached at 120~min, followed by 60~min after injection
The Evolution of Primate Short-Term Memory.
Short-term memory is implicated in a range of cognitive abilities and is critical for understanding primate
cognitive evolution. To investigate the effects of phylogeny, ecology and sociality on short-term memory, we tested the largest and most diverse primate sample to date (421 non-human primates across 41 species) in an experimental delayed-response task. Our results confirm previous findings that longer delays decrease memory performance across species and taxa. Our analyses demonstrate a considerable contribution of phylogeny over ecological and social factors on the distribution of short-term memory performance in primates; closely related species had more similar short-term memory abilities. Overall, individuals in the branch of Hominoidea performed better compared to Cercopithecoidea, who in turn performed above Platyrrhini and Strepsirrhini. Interdependencies between phylogeny and socioecology of a given species presented an obstacle to disentangling the effects of each of these factors on the evolution of short-term memory capacity. However, this study offers an important step forward in understanding the interspecies and individual variation in short-term memory ability by providing the first phylogenetic reconstruction of this trait’s evolutionary history. The dataset constitutes a unique resource for studying the evolution of primate cognition and the role of short-term memory in other cognitive abilities.info:eu-repo/semantics/publishedVersio